ENTANGLEMENT OF RANDOM PURE STATES OF BIPARTITE INDISTINGUISHABLE SYSTEMS

> Sergio Solórzano R. Carlos Viviescas

Universidad Nacional de Colombia

OUTLINE

- Entanglement
- Identical and indistinguishable particles
- Entanglement of indistinguishable particles
- Random states

ENTANGLEMENT - I

$$\begin{aligned} \mathcal{H}_1 &= \mathcal{H}_2 = \mathbb{C}^2 \quad \sigma_a = \sigma \cdot \hat{a} \\ \mathcal{H} &= \mathbb{C}^2 \otimes \mathbb{C}^2 \quad \sigma_b = \sigma \cdot \hat{b} \end{aligned}$$

Product State

ENTANGLEMENT - I

$$\begin{aligned} \mathcal{H}_1 &= \mathcal{H}_2 = \mathbb{C}^2 \quad \sigma_a = \sigma \cdot \hat{a} \\ \mathcal{H} &= \mathbb{C}^2 \otimes \mathbb{C}^2 \quad \sigma_b = \sigma \cdot \hat{b} \end{aligned}$$

Product State

Entangled State

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{2}} (|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle) \quad \langle\psi|\sigma_a \otimes \sigma_b|\psi\rangle = -\cos\theta_{ab} \\ \rho &\neq \rho_1 \otimes \rho_2 \qquad \qquad \text{Sub-Systems are correlated} \end{split}$$

Entangled states are those that are not product states

ENTANGLEMENT - I

$$\begin{aligned} \mathcal{H}_1 &= \mathcal{H}_2 = \mathbb{C}^2 \quad \sigma_a = \sigma \cdot \hat{a} \\ \mathcal{H} &= \mathbb{C}^2 \otimes \mathbb{C}^2 \quad \sigma_b = \sigma \cdot \hat{b} \end{aligned}$$

Product State

Entangled State

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{2}} (|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle) \quad \langle\psi|\sigma_a \otimes \sigma_b|\psi\rangle = -\cos\theta_{ab} \\ \rho &\neq \rho_1 \otimes \rho_2 \qquad \qquad \text{Sub-Systems are correlated} \end{split}$$

Entangled states are those that are not product states Entanglement depends on the tensor product structure of the system

ENTANGLEMENT - II

If there is more than one Schmidt coefficient different from 0 the state is entangled

ENTANGLEMENT - III

How to quantify entanglement ?

$$LOCC = Local Operations and$$
$$u_1 \otimes u_2 |\psi\rangle = \sum_{i,j}^{n_j n_i} C_{ij} u_1 \otimes u_2 |\varphi_i\rangle |\phi_j\rangle$$

Classical Communication

Only classical correlations

Some Measures

$$E[|\psi\rangle] = -Tra[\rho_r Ln(\rho_r)] = -\sum_{i}^{min(n_j n_i)} \lambda_i \ln \lambda_i \qquad \text{Entropy}$$

$$C[|\psi\rangle] = |\langle\psi^*|\sigma_y \otimes \sigma_y |\psi\rangle| \qquad \text{Concurrence}$$

Under LOCC conditions, Schmidt coefficients contains all the information about the entanglement of the system

IDENTICAL AND INDISTINGUISHABLE PARTICLES

Symmetrization postulate

Fermions, Half-integer spin, anti-symmetric states

Bosons, integer spin, symmetric states

$$|\varphi\rangle = \frac{1}{\sqrt{2}} (|\alpha\rangle_1 |\beta\rangle_2 - |\beta\rangle_2 |\alpha\rangle_1) \qquad |\varphi\rangle = \frac{1}{\sqrt{2}} (|\alpha\rangle_1 |\beta\rangle_2 + |\beta\rangle_2 |\alpha\rangle_1)$$

Are these states entangled?

Which is the nature of entanglement on identical particle systems?

IDENTICAL AND INDISTINGUISHABLE PARTICLES

Dimension of the Composite Hilbert Space

INDISTINGUISHABLE PARTICLES ENTANGLEMENT OF PARTICLES-I

John Schliemann, et al. PRL. A 64, 022303 (2001) R.Paskauskas, L.You. PRI.A 64, 042310 (2001)

Diagonal $\longrightarrow B = uzu^T$

John Schliemann, et al. PRL. A 64, 022303 (2001) R.Paskauskas, L.You. PRIA 64, 042310 (2001)

John Schliemann, et al. PRL. A 64, 022303 (2001) R.Paskauskas, L.You. PRI.A 64, 042310 (2001)

BIPARTITE RANDOM STATES OF FERMIONIC AND BOSONIC SYSTEMS

Why random states?

- Entanglement is an useful resource for quantum computation and randomness is a way to create it.
- Useful in super dense coding, remote state preparation, data hiding protocols.
- They provide a natural benchmark for assessing: schemes to distinguish quantum states.

Random states allow to asset general behaviors with minimal prior information.

BIPARTITE RANDOM STATES OF FERMIONIC AND BOSONIC SYSTEMS

The systems of our interest:

Distinguishable Particles (2Q-bits) $\mathcal{H}_{S=C^{2}}$ $\mathcal{H}=\mathcal{H}_{S}\otimes\mathcal{H}_{S}$ Dim $(\mathcal{H})=4$

2 Fermions 4 Levels each

 $\mathcal{H}_{S=C}^{\mathcal{A}} \quad \mathcal{H}=\mathcal{A}(\mathcal{H}_{S\otimes}\mathcal{H}_{S}) \quad \text{Dim}(\mathcal{H})=6$

2 Bosons 2 Levels each $\mathcal{H}_{S=C^2} = \mathcal{H}=S(\mathcal{H}_{S\otimes}\mathcal{H}_{S})$ Dim $(\mathcal{H})=3$

HOW DO WE QUANTIFY INDISTINGUISHABLE PARTICLES ENTANGLEMENT?

CONCURRENCE:

Distinguishable particles

$$2|c_{12}c_{21} - c_{22}c_{11}|$$

Fermions

 $c[|\psi\rangle] = -$

 $8|w_{12}w_{34} - w_{13}w_{24} + w_{14}w_{23}|$

Bosons

 $4|z_{11}z_{22}-z_{12}^2|$

K.Eckert, et al. Annals of Physics 299, 88-127(2002)

BIPARTITE RANDOM STATES OF FERMIONIC AND BOSONIC SYSTEMS

Which distribution of states?

Distribution for fermions

$$P_f[|\psi\rangle] = \frac{15}{16\pi^6} \delta\left(\frac{1}{4} - \sum_{i< j}^4 |w_{ij}|^2\right)$$

Distribution for bosons

$$P_b[|\psi\rangle] = \frac{1}{4\pi} \delta\left(1 - \sum_{i=1}^3 |\alpha_i|^2\right)$$

We are interested in the behavior of concurrence for random states. $P(c) = \int [d|\psi\rangle] \,\delta(c - c(|\psi\rangle)) P(|\psi\rangle)$

PDF FOR FERMIONS CONCURRENCE

PDF FOR BOSONS CONCURRENCE

P(C)

PDF FOR DISTINGUISHABLE PARTICLES, FERMIONS AND BOSONS

CONCLUSIONS AND OUTLOOK

How is the behavior of the distributions for higher dimensions?

What happens for multi-particle systems? (E.g Inequivalent Entanglement properties W ,GHZ states)

Is the LOCC paradigm important for quantum correlations in systems of identical particles?

THANK YOU

REFERENCES

- John Schliemann, J. Ignacio Cirac, Marek Kuś, Maciej Lewenstein, and Daniel Loss. Phys. Rev. A 64, 022303 (2001)
- R.Paskauskas, L.You. Phys. Rev. A 64, 042310 (2001)
- John Schliemann, Daniel Loss, and A. H. MacDonald. Phys. Rev. B 63, 085311 (2001)
- K.Eckert, John Schliemann, D.Druss, M.Lewenstein. Annals of Physics 299, 88-127(2002)
- A J Scott, Carlton M Caves, entangling power of the quantum baker's map, Journal of physics A:Math. Gen 36 9553-9576 (2003)
- Michael J.W. Hall, Random quantum correlations and density operator distributions. Physics letters A 242 122-1223 (1998)