Quantum Coherence in Organic Systems: From Small Molecules to Photosynthetic Antenna Complexes

Studied by Ultrafast Single-Molecule Detection

Richard Hildner

Experimentalphysik IV, Universität Bayreuth, Bayreuth, D ICFO – The Institute of Photonic Sciences, Castelldefels (Barcelona), ES

Bacterial Photosynthesis

Scheuring et al., Curr. Opinion Chem. Bio.. 10 (2006) 387

Bacterial Photosynthesis

Bacterial Photosynthesis

Transport of excitation energy:

(sub-)ps
highly directional
near 100 % quantum efficiency

Transport of excitation energy:

(sub-)ps
highly directional
near 100 % quantum efficiency

•Spatial organisation of pigments: 1 molecule/nm²

Transport of excitation energy:

- •(sub-)ps
- highly directional
- near 100 % quantum efficiency

- •Spatial organisation of pigments: 1 molecule/nm²
- Energy funnel
- •Quantum coherent transfer?

energy disorder ∆E due to protein
electronic coupling V due to proximity

→ incoherent hopping from site to site (Förster)

$$k = \frac{2\pi}{\hbar} V^2 \cdot I = \frac{1}{\tau} \left(\frac{R_0}{R}\right)^6$$

energy disorder ∆E due to protein
electronic coupling V due to proximity

→ incoherent hopping from site to site (Förster)

$$k = \frac{2\pi}{\hbar} V^2 \cdot I = \frac{1}{\tau} \left(\frac{R_0}{R}\right)^6$$

<u>Strong Coupling Regime: V > ∆E</u>

energy disorder ∆E due to protein
electronic coupling V due to proximity

→ incoherent hopping from site to site (Förster)

$$k = \frac{2\pi}{\hbar} V^2 \cdot I = \frac{1}{\tau} \left(\frac{R_0}{R}\right)^6$$

Strong Coupling Regime: V > ΔE

→ coherent delocalisation
 → population oscillations

 (in site basis)
 ~ 100 fs for V = 300 cm⁻¹

 \rightarrow energy is available everywhere!

Does Coherence play a biological role?

Coherence-assisted transport

Environmentally-assisted transport

Ultrafast Processes in Photosynthesis

Scheuring et al., EMBO J. 23 (2004) 4127

Hu et al., Quart. Rev. Biophys. 35 (2002) 1

 \rightarrow We have to understand the ultrafast response of single complexes

•population oscillations $\omega_R = \frac{\mu_{12}}{\hbar} E_{ext}$ •coherent superposition state $\Psi(t) >= a_1(t) 1 > + a_2(t) 2 >$

$$x = a_{2}a_{1} + a_{1}a_{2} \\ y = i \cdot (a_{2}a_{1} - a_{1}a_{2})$$
 coherences
$$z = |a_{1}|^{2} - |a_{2}|^{2}$$
 population

Feynman, Vernon, Hellwarth, J. Appl. Phys. 1957

•population oscillations
$$\omega_R = \frac{\mu_{12}}{\hbar} E_{ext}$$

•coherent superposition state
 $\Psi(t) >= a_1(t) 1 > + a_2(t) 2 >$

$$x=a_{2}a_{1}+a_{1}a_{2} \\ y=i\cdot(a_{2}a_{1}-a_{1}a_{2})$$
 coherences
$$z=|a_{1}|^{2}-|a_{2}|^{2}$$
 population

Feynman, Vernon, Hellwarth, J. Appl. Phys. 1957

environment 'destroys' coherence

 \rightarrow pure dephasing time T_2^*

Brinks, Hildner et al. Opt. Express 2011

 Δt , $\Delta \phi$ =0 rad

Hildner, Brinks, van Hulst, Nature Phys. 2011

Density-matrix formalism:

•Rabi-frequency $\omega_{_{R,O}}$

•pure dephasing time T_2^*

increasing Rabi-frequency/ light - molecule interaction

Hildner, Brinks, Stefani, van Hulst, PCCP 2011

Hildner, Brinks, van Hulst, Nature Phys. 2011

Dinaphtoquarterrylene, DNQDI

120 nm bandwidth \rightarrow 15 fs pulse width

Femtosecond quantum optics with single molecules at 300 K

Wave-packet interference

Coherent fs-dynamics in single LH antenna complexes

Acknowledgements

People:

Daan Brinks Fernando Stefani Florian Kulzer Tim Taminiau Niek van Hulst

Klaus Müllen

MPI Mainz

DŸ

Institut de Ciències

Fotòniques

Richard Cogdell

Uni Glasgow

Funding: Plan Nacional MAT2006 "Single Molecule FemtoPhotonics" Consolider-Ingenio "Nanolight.es" ERC Advanced Grant

