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Quantum  tomography

•  Phase-‐‑space  methods
ü Quantum mechanics appears as a statistical theory in phase space
ü Simple to understand (no abstract Hilbert-space concepts)
ü Simple to picture
ü Computationally efficient

•  Basic  ingredients
ü (Classical) phase space 
ü (Quasi) distributions in phase space
ü Coherent states
ü Star product

•  Drawbacks
ü The machinery works well for continuous variables (and symmetry) 
ü  For discrete systems we need a toolbox to deal with them

Motivation
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Quantum  tomography

  

Phase  space  for  continuous  variables  (I)

  Dynamical  symmetry  group
ü Algebra of observables: self-adjoint position and momentum operators

ü Phase space: coadjoint orbit associated with an irreducible representation of the 
dynamical symmetry group: 

 
ü Generators of translations in position and momentum 

[q̂, p̂] = i Heisenberg-Weyl

R2

Û(q) = exp(−iqp̂) V̂ (p) = exp(ipq̂)
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Quantum  tomographyQuantum  tomographyPhase  space  for  continuous  variables  (II)

ü Weyl unitary form

ü Displacement operators

ü Complete orthonormal set in the space of operators acting on 

   

D̂(q, p) = e−iqp/2 Û(p)V̂ (q) ,= exp[i(pq̂ − qp̂)]

XXIX  Group  Theoretical  Methods  in  Physics.  Nankai,  August  2012  
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Quantum  tomographyQuantum  tomography

ü Coherent states

ü Fiducial state 
‣ Fundamental state of the harmonic oscillator (Gaussian!!)
‣ Minimum uncertainty state
‣ Eigenstate of the Fourier transform

|q, p� = D̂(q, p) |ψ0�

|ψ0�

Quantum  tomographyQuantum  tomographyPhase  space  for  continuous  variables  (III)
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Quantum  tomographyQuantum  tomographyPhase  space  for  continuous  variables  (IV)

  Wigner  function
ü Map the density matrix into a classical function on phase space

ü Wigner kernel (Stratonovich-Weyl quantizer) 

W (q, p) = Tr[�̂ ŵ(q, p)]

�̂ =
1

(2π)2

�

R2
ŵ(q, p)W (q, p) dqdp

ŵ(q, p) =
1

(2π)2

�

R2
exp[−i(pq� − qp�)] D̂(q�, p�) dq�dp� Double 

Fourier transform

Displaced 
Parity

ŵ(q, p) = D̂(q, p) ŵ(0, 0) D̂†(q, p) = 2D̂(q, p) P̂ (0, 0) D̂†(q, p)
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Quantum  tomographyQuantum  tomographyPhase  space  for  continuous  variables  (IV)
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Quantum  tomographyQuantum  tomographyPhase  space  for  continuous  variables  (IV)
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Quantum  tomographyQuantum  tomographyPhase  space  for  continuous  variables  (V)

  Properties

ü Real
ü Proper marginals 
ü Covariance

ü Traciality

W�̂�(q, p) = W�̂(q − q0, p− p0)

Tr(�̂1 �̂2) ∝�

R2
W1(q, p)W2(q, p) dqdp

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Friday, October 12, 2012



Quantum  tomographyQuantum  tomographyPhase  space  for  continuous  variables  (VI)

ü Symbol of an operator

ü Star product 
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d× d

Single-‐‑mode  statesQuantum  tomography

interval !!"0,1!q!1# are known (Roman, 1992; Stich-
tenoth 1993; Blake et al., 1998):

• The Plotkin upper bound:

$q%!&'1!%1!q!1&!1!. (5)

• The Hamming or sphere-packing upper bound:

$q%!&'1!Hq%!/2&. (6)

• The Bassaligo-Elias upper bound:

$q%!&'1!Hq"(!!(%(!!&# , with (ª%1!q!1&.
(7)

• The Gilbert-Varshamov lower bound:

$q%!&)1!Hq%!&. (8)
This last one is very important, since it ensures the
existence of codes as long as desired with minimum
relative distance ! and rate R , both asymptotically
positive.

• The Tsfasman-Vlăduţ-Zink lower bound: if q is a
square, then on "0,1!(!q!1)!1# one has

$q%!&)!1!
1

!q!1
" !! , (9)

which is stronger than the Gilbert-Varshamov bound
in some places from q"72 on.

For an illustration see Fig. 1.

III. QUANTUM INFORMATION

The quantum information theory, being an extension
of the classical theory, is essentially a product of the past
decade (Bouwmeester, Ekert, and Zeilinger, 2000;
Nielsen and Chuang, 2001).

In quantum information, the analog of the classical bit
is the qubit or quantum bit (Schumacher, 1995). It is a
two-dimensional quantum system (for instance, a spin 1

2 ,
a photon polarization, an atomic system with two rel-
evant states, etc.), with Hilbert space isomorphic to C2.
Besides the two basis states #0*,#1*, the system can have
infinitely many other (pure) states given by a coherent
linear superposition $#0*#+#1*. The Hilbert space of n
qubits is the tensor product C2 ! ¯ !C2"C2n

, and its
natural basis vectors are #0* ! ¯ ! #0*"..#0 ¯ 0*, #0*
! ¯ ! #1*"..#0 ¯ 1*, . . . ,#1* ! ¯ ! #1*"..#1 ¯ 1*. For
this basis, also known as the computational basis, we
shall assume lexicographic ordering. When appropriate,
we shall briefly write #x* to denote #xn!1 ¯ x0*, with
xªx0#2x1# ¯#2n!1xn!1 . Thus #5*"#0 ¯0101*.

It is possible to extend two-level qubits to qudits or
d-dimensional systems (d)2; Rungta et al., 2001). This
leads to an extension of the binary quantum logic. Using
d computational levels we can reduce the number n2 of
qubits needed for a computation by a factor of !log2 d",
since the Hilbert space of nd qudits contains the space of
n2 qubits provided that dnd)2n2.

Given an arbitrary state vector #,*"c0#0*#c1#1* of a
qubit, the complex coefficients c0 ,c1!C amount to four
real parameters. However, if we parametrize them as ci
"rie

i- i, i"0,1 and factor out a global irrelevant phase,
we find #,*"r0#0*#r1ei(-1!-0)#1*. Imposing #,* to be
of unit norm, we can write it as

#.*"%cos 1
2 (&#0*#ei-%sin 1

2 (&#1*, (10)

where r0 ,r1 are now parametrized by the angles (,-
ª-1!-0 .

These two angles represent a point in an S2 sphere,
called the Bloch sphere, as shown in Fig. 2. The (projec-
tive) Hilbert space of pure states of a single qubit can be
parametrized by the points on this sphere. As a by-

FIG. 1. Asymptotic bounds for q"2 (above) and q"112 (be-
low). The dark zone is limited by the lower and upper bounds
given in the text by Eqs. (5)–(9).

FIG. 2. Parametrization of the states of one qubit: the Bloch
sphere.
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Phase  space  for  a  single  qudit  (I)

and (a!, b!) define different directions in phase space.
The most glaring lack of similarity between the two cases
is that in the continuous case the measurements arise
naturally from the phase-space description of the particle,
whereas in the discrete case there is no such description,
and the measurements are constructed by other means.
The rest of this paper is motivated by the following
questions: Can the measurements that we used for
determining the state of one or two qubits be obtained
from a phase-space description of the system? And if so,
can this construction be generalized to larger systems?
As we will see, the answer to both questions is yes.

4. Phase space for a single qubit
Let us consider first the case of a single qubit, imagined as
a single spin- 1

2
particle. I will take the horizontal axis of

phase space to represent the z component of spin, which
takes the two values 1 and 2. The vertical axis will
represent the x component of spin, its two values being
3 and 4. Thus the phase space consists of exactly four
points, as shown in Figure 3(a).

In order to make sense of the notion of a “line” in the
discrete phase space, and the notion of “parallel lines,”
we want to be able to write down algebraic equations
involving the phase-space variables. So, in addition to
associating with the axes the physical states shown in
Figure 3(a), we also want to associate with these axes two
variables q and p, analogs of position and momentum, that
take numerical values. I will let these numerical values be
0 and 1, interpreted as elements of the binary field !2.
That is, addition and multiplication of the values of q and
p will be mod 2. This way of labeling the phase space is
shown in Figure 3(b).

A line in this phase space is the set of points that
satisfies a linear equation, aq " pb # c, where a, b, and c
also take values in !2. For example, the equation q " p # 0
defines the line consisting of the two points (0, 0) and
(1, 1). It is parallel to the line defined by q " p # 1,
which consists of the points (0, 1) and (1, 0). In fact, there
are exactly three sets of parallel lines in this phase space,
that is, three striations, and these are shown in Figure 4.
As in the continuous case, each striation will be associated
with a measurement, and each line in the striation will be
associated with a particular outcome of the measurement.
Shortly we will define a Wigner function on this phase
space, which will represent an arbitrary spin state by four
real numbers, one for each point in phase space. The
Wigner function will have the property that its sum over
any line is equal to the probability of the measurement
outcome associated with that line.

We are thus led to the following question: What
measurement— or, more properly, what orthogonal basis—
are we to associate with each striation? In labeling the
axes, we have implicitly associated bases with the

horizontal and vertical striations: The vertical lines are
associated with the states !1$ and !2$, and the horizontal
lines are associated with the states !3$ and !4$. So all
that remains is to associate a basis with the diagonal lines.
The reader is likely to be able to guess what basis we will
assign to these lines, but I want the structure of the phase
space to pick out this basis for us, as if we could not
guess it. (The construction will be more impressive in
the case of two qubits, where it is harder to guess the
measurements.)

The crucial concept for fixing the remaining basis is
the concept of a translation in the discrete phase space.
A translation is simply the addition, mod 2, of a vector

Figure 3

(a) Labeling the phase space with physical states. (b) Labeling the 
phase space with abstract variables q and p taking values in the 
binary field     2.

or

0 1

1

0

q

p

(a) (b)

Figure 4

The three striations of the 2 ! 2 phase space.
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A  lot  of  redundant  information! The  precise  amount  of  information!

The  phase  space  is  a                          grid  of  discrete  points!  
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Two  mode  fields:  Stokes  operatorsQuantum  tomographyPhase  space  for  a  single  qudit  (II)

  Building  the  geometry  (d  is  a  prime  number)
ü  Computational and conjugate basis 

 
ü Generators of translations in position and momentum 

Ûn|�� = |� + n�

V̂ m|�� = ω(m�) |��
ω(�) ≡ ω� = exp(i2π�/d)

All  the  operations  mod  d

|�� |�̃� = F |��
“position” “momentum”

F̂ =
1√
d

d−1�

�,��=0

ω(� ��) |�����|
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Polarization  squeezed  statesQuantum  tomographyPhase  space  for  a  single  qudit  (III)

  Remarks
ü “Complementarity”

ü Weyl commutation relation 

ü Discrete “position” and “momentum” operators?

V̂ = F̂ Û F̂†

V̂ mÛn = ω(mn) ÛnV̂ m

Û = exp(−2πiP̂ /d) V̂ = exp(2πiQ̂/d)

  There  are  no  infinitesimal  displacements!
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Phase  space  for  a  single  qudit  (IV)

ü Displacement operators

  
 Relevant choice 

ü Coherent states

ü Properties analogous to their continuous counterparts.

D̂(m, n) = eiφ(m,n) ÛnV̂ m

φ(m, n) =
2π

d
2−1 mn

|m, n� = D̂(m, n) |ψ0�
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Polarization  squeezing  setupQuantum  tomographyPhase  space  for  a  single  qudit  (V)

  Fixing  the  fiducial  state
ü Ground state of the “discrete harmonic oscillator” with periodic boundary 
conditions (Harper Hamiltonian)

ü Minimum uncertainty state 

ü Eigenstate of the discrete Fourier transform 

Ĥ = 2− Û + Û
†

2
− V̂ + V̂

†

2

|ψ0� =
1√
C

�

�

ϑ3

�
π�

d

��e−π
d

�
|��
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∆̂(m, n) = D̂(m, n) ∆̂(0, 0) D̂†(m, n) = 2D̂(m, n) P̂ D̂†(m, n)

Stokes  measurementQuantum  tomographyPhase  space  for  a  single  qudit  (VI)

  Wigner  function
ü Map the density matrix into a classical function on the discrete grid

ü Discrete Wigner kernel 

W�̂(m, n) = Tr[�̂ ∆̂(m, n)]

�̂ =
1
d

�

m,n

W (m, n)∆̂(m, n)

∆̂(m, n) =
1
d

�

k,l

ω(nk −ml) D̂(m, n)

Displaced 
Parity

Double 
Fourier transform
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Stokes  measurementQuantum  tomographyPhase  space  for  a  single  qudit  (VII)
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Stokes  measurementQuantum  tomographyPhase  space  for  multiqudit  systems  (I)

ü  Instead of natural numbers, it is then convenient to use elements of the finite 
field Gal(dn) to label states.

ü  We can almost directly translate all the properties for a single qudit and we 
can endow the phase-space with the geometrical properties of the ordinary 
plane. 

ü Let         be a computational basis (labeled by powers of a primitive element in 
the field)

|λ�

Ûν |λ� = |λ + ν�

V̂µ|λ� = χ(µλ)|λ�
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Stokes  measurementQuantum  tomographyPhase  space  for  multiqudit  systems  (II)

ü  Displacement operators

ü Coherent states

üWigner function

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Friday, October 12, 2012



|ψ� =
1√
2
(|00�+ |11�)

The  dark  planeQuantum  tomographyPhase  space  for  multiqudit  systems  (III)
14486 A B Klimov et al
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Figure 1. (a)–(b) Wigner function for the state |ψ〉 = 1√
2

[|0〉 + |σ 3〉] defined on GF(22).
The set of rotation operators: (a) Vσ = Diag(1, 1, i, −i), Vσ 2 = Diag(1, i, −1, i), Vσ 3 =
Diag(1, i,−i, 1); (b) Vσ = Diag(1, 1, i, −i), Vσ 2 = Diag(1, i, 1,−i), Vσ 3 = Diag(1, i, i, −1).

Vθ = Diag(1, 1, 1, i, i,−i,−1, i), Vσ 2 = Diag(1, i, 1,−i, 1,−1, i, i), (67)

Vσ 3 = Diag(1, 1, i, i,−i,−1, i, 1), Vσ 4 = Diag(1, 1, i,−1, 1, i,−i, i), (68)

Vσ 5 = Diag(1, i, i,−i,−1, i, 1, 1), Vσ 6 = Diag(1, i, 1,−1,−i,−i,−i, 1) (69)

Vσ 7 = Diag(1, i, i, 1,−i, 1,−1, i), (70)

and the minimal polynomial is chosen as σ 3 + σ 2 + 1 = 0.
For fields of odd characteristic, in the whole group {VµXν, µ, ν ∈ GF(pn)} a subgroup

containing only rotation operators {Vµ,µ ∈ GF(pn)} can be separated, which allows us to
construct the phase space as outlined in previous sections, so that the Wigner function is
uniquely defined for a given state. Nevertheless, the whole group can be used for phase-space
construction as well, which would lead to non-uniqueness in the definition of the Wigner
function, very similar to (57).

For an arbitrary state, we can easily calculate a total number of possible Wigner functions
which represent this state in the discrete phase space. According to the present construction, we
fix the phase of the state corresponding to the horizontal line (42). Also, we fix the property (7)
of the Fourier transform operator (6), i.e. the Fourier transformation of Zα operators generate
Xα operators without any phase factor (which in principle is not necessary if the property
F 4 = I for d = pn, where p %= 2 and F 2 = I for d = 2n is not required). Now, we can
generate all the possible Wigner functions choosing (d − 1) different rotation operators VµXν

(both for fields of odd and even characteristics), which gives dd−1 different structures (which
is directly related to different quantum nets introduced in [2]). Nevertheless, the symmetry of
the state can essentially reduce the number of different Wigner functions.

4. Reconstruction procedure

It is well known that the Wigner function can be reconstructed using projective measurements,
associated with a summation over the lines [1, 20]. In this section we explicitly relate the
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The  real  detectionQuantum  tomographyPhase  space  for  multiqudit  systems  (IV)
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•  For many purposes is useful to have a way of picturing quantum states. We 
have provided a comprehensive toolbox for this task.

• All the relevant quantum mechanical aspects can be encompased within this 
framework, provided one uses the proper phase space.

•  The role of the Fourier transform in quantum information can be never 
underestimated.

SummaryReconstructed  Q  functionQuantum  tomographyConclusions
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