A handy toolbox for picturing qubits in phase space

qubism

L. L. Sánchez-Soto

Outline

- Motivation
- Phase space for continuous variables
- Phase space for a single qudit
- Phase space for multiqudit systems
- Conclusions

Motivation

- Phase-space methods
\checkmark Quantum mechanics appears as a statistical theory in phase space
\checkmark Simple to understand (no abstract Hilbert-space concepts)
\checkmark Simple to picture
\checkmark Computationally efficient
- Basic ingredients
\checkmark (Classical) phase space
\checkmark (Quasi) distributions in phase space
Coherent states
- Star product
- Drawbacks
\checkmark The machinery works well for continuous variables (and symmetry)
\checkmark For discrete systems we need a toolbox to deal with them

Phase space for continuous variables (I)

Dynamical symmetry group

\checkmark Algebra of observables: self-adjoint position and momentum operators

$$
[\hat{q}, \hat{p}]=i \quad \text { Heisenberg-Weyl }
$$

\checkmark Phase space: coadjoint orbit associated with an irreducible representation of the dynamical symmetry group: \mathbb{R}^{2}

Generators of translations in position and momentum

$$
\begin{array}{ll}
\hat{U}(q)=\exp (-i q \hat{p}) & \hat{V}(p)=\exp (i p \hat{q}) \\
\hat{U}\left(q^{\prime}\right)|q\rangle=\left|q+q^{\prime}\right\rangle & \hat{V}\left(p^{\prime}\right)|p\rangle=\left|p+p^{\prime}\right\rangle
\end{array}
$$

Phase space for continuous variables (II)

\checkmark Weyl unitary form

$$
\hat{V}(p) \hat{U}(q)=e^{i q p} \hat{U}(p) \hat{V}(p)
$$

\checkmark Displacement operators

$$
\hat{D}(q, p)=e^{-i q p / 2} \hat{U}(p) \hat{V}(q),=\exp [i(p \hat{q}-q \hat{p})]
$$

\checkmark Complete orthonormal set in the space of operators acting on \mathcal{H}

$$
\operatorname{Tr}\left[\hat{D}(q, p) \hat{D}^{\dagger}\left(q^{\prime}, p^{\prime}\right)\right]=2 \pi \delta\left(q-q^{\prime}\right) \delta\left(p-p^{\prime}\right)
$$

Phase space for continuous variables (III)

\checkmark Coherent states

$$
|q, p\rangle=\hat{D}(q, p)\left|\psi_{0}\right\rangle
$$

\checkmark Fiducial state $\left|\psi_{0}\right\rangle$

- Fundamental state of the harmonic oscillator (Gaussian!!)
- Minimum uncertainty state
- Eigenstate of the Fourier transform

Phase space for continuous variables (IV)

Wigner function

\checkmark Map the density matrix into a classical function on phase space

$$
\begin{gathered}
W(q, p)=\operatorname{Tr}[\hat{\varrho} \hat{w}(q, p)] \\
\hat{\varrho}=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{w}(q, p) W(q, p) d q d p
\end{gathered}
$$

\checkmark Wigner kernel (Stratonovich-Weyl quantizer)

$$
\begin{gathered}
\hat{w}(q, p)=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \exp \left[-i\left(p q^{\prime}-q p^{\prime}\right)\right] \hat{D}\left(q^{\prime}, p^{\prime}\right) d q^{\prime} d p^{\prime} \quad \begin{array}{c}
\text { Double } \\
\text { Fourier transform }
\end{array} \\
\hat{w}(q, p)=\hat{D}(q, p) \hat{w}(0,0) \hat{D}^{\dagger}(q, p)=2 \hat{D}(q, p) \hat{P}(0,0) \hat{D}^{\dagger}(q, p) \begin{array}{c}
\text { Displaced } \\
\text { Parity }
\end{array}
\end{gathered}
$$

Phase space for continuous variables (IV)

Phase space for continuous variables (IV)

Phase space for continuous variables (V)

Properties

\checkmark Real
\checkmark Proper marginals
\checkmark Covariance
$W_{\hat{\varrho}^{\prime}}(q, p)=W_{\hat{\varrho}}\left(q-q_{0}, p-p_{0}\right)$
\checkmark Traciality

$$
\begin{gathered}
\operatorname{Tr}\left(\hat{\varrho}_{1} \hat{\varrho}_{2}\right) \propto \\
\int_{\mathbb{R}^{2}} W_{1}(q, p) W_{2}(q, p) d q d p
\end{gathered}
$$

Phase space for continuous variables (VI)

\checkmark Symbol of an operator

$$
\hat{A}=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} a(q, p) \hat{w}(q, p) d q d p
$$

\checkmark Star product

$$
\begin{aligned}
&(a \star b)(q, p)=\frac{4}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} a\left(q+q^{\prime}, p+p^{\prime}\right) \exp \left[2 i\left(q^{\prime} p^{\prime \prime}-q^{\prime \prime} p^{\prime}\right)\right] b\left(q+q^{\prime \prime}, p+p^{\prime \prime}\right) d q^{\prime} d p^{\prime} d q^{\prime \prime} d p^{\prime \prime} \\
&(a \star b)(q, p)=a(q, p) \exp \left(-\frac{i}{2} \overleftrightarrow{\mathcal{P}}\right) b(q, p) \\
& \overleftrightarrow{\mathcal{P}}=\frac{\overleftarrow{\partial}}{\partial q} \vec{\partial} \frac{\overleftarrow{\partial}}{\partial p}-\frac{\overleftarrow{\partial}}{\partial p} \frac{\text { Poisson operator }}{\partial q} \quad
\end{aligned}
$$

Phase space for a single qudit (I)

A lot of redundant information!

The precise amount of information!

The phase space is a $d \times d$ grid of discrete points!

Phase space for a single qudit (II)

Building the geometry (d is a prime number)
\checkmark Computational and conjugate basis

\checkmark Generators of translations in position and momentum

$$
\begin{aligned}
\hat{U}^{n}|\ell\rangle & =|\ell+n\rangle \\
\hat{V}^{m}|\ell\rangle & =\omega(m \ell)|\ell\rangle
\end{aligned}
$$

All the operations mod d

$$
\omega(\ell) \equiv \omega^{\ell}=\exp (i 2 \pi \ell / d)
$$

Phase space for a single qudit (III)

Remarks

\checkmark "Complementarity"

$$
\hat{V}=\hat{\mathcal{F}} \hat{U} \hat{\mathcal{F}}^{\dagger}
$$

\checkmark Weyl commutation relation

$$
\hat{V}^{m} \hat{U}^{n}=\omega(m n) \hat{U}^{n} \hat{V}^{m}
$$

\checkmark Discrete "position" and "momentum" operators?

$$
\hat{U}=\exp (-2 \pi i \hat{P} / d) \quad \hat{V}=\exp (2 \pi i \hat{Q} / d)
$$

There are no infinitesimal displacements!

Phase space for a single qudit (IV)

\checkmark Displacement operators

$$
\hat{D}(m, n)=e^{i \phi(m, n)} \hat{U}^{n} \hat{V}^{m}
$$

Relevant choice $\quad \phi(m, n)=\frac{2 \pi}{d} 2^{-1} m n$
\checkmark Coherent states

$$
|m, n\rangle=\hat{D}(m, n)\left|\psi_{0}\right\rangle
$$

\checkmark Properties analogous to their continuous counterparts.

Phase space for a single qudit (V)

Fixing the fiducial state

\checkmark Ground state of the "discrete harmonic oscillator" with periodic boundary conditions (Harper Hamiltonian)

$$
\hat{H}=2-\frac{\hat{U}+\hat{U}^{\dagger}}{2}-\frac{\hat{V}+\hat{V}^{\dagger}}{2}
$$

\checkmark Minimum uncertainty state
\checkmark Eigenstate of the discrete Fourier transform

$$
\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{C}} \sum_{\ell} \vartheta_{3}\left(\frac{\pi \ell}{d} \left\lvert\, e^{-\frac{\pi}{d}}\right.\right)|\ell\rangle
$$

Phase space for a single qudit (VI)

Wigner function

\checkmark Map the density matrix into a classical function on the discrete grid

$$
\begin{aligned}
& W_{\varrho}(m, n)=\operatorname{Tr}[\hat{\varrho} \hat{\Delta}(m, n)] \\
& \hat{\varrho}=\frac{1}{d} \sum_{m, n} W(m, n) \hat{\Delta}(m, n)
\end{aligned}
$$

\checkmark Discrete Wigner kernel

$$
\begin{aligned}
& \hat{\Delta}(m, n)=\frac{1}{d} \sum_{k, l} \omega(n k-m l) \hat{D}(m, n) \\
& \hat{\Delta}(m, n)=\hat{D}(m, n) \hat{\Delta}(0,0) \hat{D}^{\dagger}(m, n)=2 \hat{D}(m, n) \hat{P} \hat{D}^{\dagger}(m, n) \begin{array}{c}
\text { Double } \\
\text { Fourier transform } \\
\text { Parity }
\end{array}
\end{aligned}
$$

Phase space for a single qudit (VII)

Phase space for multiqudit systems (I)

\checkmark Instead of natural numbers, it is then convenient to use elements of the finite field Gal($\left.d^{n}\right)$ to label states.
\checkmark We can almost directly translate all the properties for a single qudit and we can endow the phase-space with the geometrical properties of the ordinary plane.
\checkmark Let $|\lambda\rangle$ be a computational basis (labeled by powers of a primitive element in the field)

$$
\begin{gathered}
\hat{U}_{\nu}|\lambda\rangle=|\lambda+\nu\rangle \\
\hat{V}_{\mu}|\lambda\rangle=\chi(\mu \lambda)|\lambda\rangle
\end{gathered}
$$

Phase space for multiqudit systems (II)

\checkmark Displacement operators

$$
\hat{D}(\mu, \nu)=\phi(\mu, \nu) \hat{U}_{\nu} \hat{V}_{\mu} \quad \phi(\mu, \nu)=\chi\left(2^{-1} \mu \nu\right)
$$

Coherent states

$$
|\mu, \nu\rangle=\hat{D}(\mu, \nu)\left|\Psi_{0}\right\rangle
$$

\checkmark Wigner function

$$
W_{\hat{e}}(\mu, \nu)=\operatorname{Tr}[\hat{\varrho} \Delta(\mu, \nu)]
$$

$$
\Delta(\mu, \nu)=\frac{1}{d^{n}} \sum_{\lambda, \kappa} \chi(\mu \lambda-\nu \kappa) \hat{D}(\lambda, \kappa)
$$

Phase space for multiqudit systems (III)

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Phase space for multiqudit systems (IV)

Conclusions

- For many purposes is useful to have a way of picturing quantum states. We have provided a comprehensive toolbox for this task.
- All the relevant quantum mechanical aspects can be encompased within this framework, provided one uses the proper phase space.
- The role of the Fourier transform in quantum information can be never underestimated.

