A handy toolbox for picturing qubits in phase space

L. L. Sánchez-Soto

Outline

- Motivation
- Phase space for continuous variables
- Phase space for a single qudit
- Phase space for multiqudit systems
- Conclusions

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Motivation

• Phase-space methods

- Quantum mechanics appears as a statistical theory in phase space
- Simple to understand (no abstract Hilbert-space concepts)
- Simple to picture
- Computationally efficient

Basic ingredients

- (Classical) phase space
- (Quasi) distributions in phase space
- Coherent states
- ✓ Star product

• Drawbacks

- The machinery works well for continuous variables (and symmetry)
- For discrete systems we need a toolbox to deal with them

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for continuous variables (I)

Dynamical symmetry group

✓ Algebra of observables: self-adjoint position and momentum operators

 $[\hat{q},\hat{p}]=i$

Heisenberg-Weyl

 \checkmark Phase space: coadjoint orbit associated with an irreducible representation of the dynamical symmetry group: \mathbb{R}^2

Generators of translations in position and momentum

 $\hat{U}(q) = \exp(-iq\hat{p})$ $\hat{V}(p) = \exp(ip\hat{q})$

$$\hat{U}(q')|q\rangle = |q+q'\rangle$$
 $\hat{V}(p')|p\rangle = |p+p'\rangle$

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for continuous variables (II)

Weyl unitary form

$$\hat{V}(p)\hat{U}(q) = e^{iqp}\hat{U}(p)\hat{V}(p)$$

Displacement operators

$$\hat{D}(q,p) = e^{-iqp/2} \hat{U}(p) \hat{V}(q), = \exp[i(p\hat{q} - q\hat{p})]$$

 \checkmark Complete orthonormal set in the space of operators acting on ${\cal H}$

$$\operatorname{Tr}[\hat{D}(q,p)\,\hat{D}^{\dagger}(q',p')] = 2\pi\,\delta(q-q')\delta(p-p')\,.$$

XXIX Group Theoretical Methods in Physics. Nankai, August 2012

Phase space for continuous variables (III)

Coherent states

$$|q,p
angle = \hat{D}(q,p) |\psi_0
angle$$

 \checkmark Fiducial state $\ket{\psi_0}$

- Fundamental state of the harmonic oscillator (Gaussian!!)
- Minimum uncertainty state
- Eigenstate of the Fourier transform

Wigner function

Friday, October 12, 2012

Map the density matrix into a classical function on phase space

 $W(q,p) = \operatorname{Tr}[\hat{\varrho}\,\hat{w}(q,p)]$

$$\hat{\varrho} = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \hat{w}(q,p) W(q,p) \, dq dp$$

Wigner kernel (Stratonovich-Weyl quantizer)

XXIX Group Theoretical Methods in Physics. Nankai, August 2012

$$\begin{split} \hat{w}(q,p) &= \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \exp[-i(pq'-qp')] \, \hat{D}(q',p') \, dq' dp' & \stackrel{\text{Double}}{\text{Fourier transform}} \\ \hat{w}(q,p) &= \hat{D}(q,p) \, \hat{w}(0,0) \, \hat{D}^{\dagger}(q,p) = 2\hat{D}(q,p) \, \hat{P}(0,0) \, \hat{D}^{\dagger}(q,p) & \stackrel{\text{Displaced}}{\text{Parity}} \end{split}$$

Parity

Phase space for continuous variables (IV)

XXIX Group Theoretical Methods in Physics. Nankai, August 2012

Phase space for continuous variables (IV)

XXIX Group Theoretical Methods in Physics. Nankai, August 2012

Phase space for continuous variables (V)

Properties

 \checkmark Real \checkmark Proper marginals \checkmark Covariance $W_{\hat{\varrho}'}(q,p) = W_{\hat{\varrho}}(q-q_0,p-p_0)$ \checkmark Traciality $\operatorname{Tr}(\hat{\varrho}_1 \, \hat{\varrho}_2) \propto$ $\int_{\mathbb{R}^2} W_1(q,p) W_2(q,p) \, dq dp$

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for continuous variables (VI)

Symbol of an operator

$$\hat{A} = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} a(q,p) \, \hat{w}(q,p) \, dq dp$$

✓ Star product

$$(a \star b)(q, p) = \frac{4}{(2\pi)^2} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} a(q + q', p + p') \, \exp[2i(q'p'' - q''p')] \, b(q + q'', p + p'') \, dq' dp' dq'' dp''$$

$$(a \star b)(q, p) = a(q, p) \exp\left(-\frac{i}{2} \overleftrightarrow{\mathcal{P}}\right) b(q, p)$$
$$\overleftrightarrow{\mathcal{P}} = \frac{\overleftarrow{\partial}}{\partial q} \frac{\overrightarrow{\partial}}{\partial p} - \frac{\overleftarrow{\partial}}{\partial p} \frac{\overrightarrow{\partial}}{\partial q} \quad \text{Poisson operator}$$

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for a single qudit (I)

A lot of redundant information!

The precise amount of information!

The phase space is a $d \times d$ grid of discrete points!

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for a single qudit (II)

Building the geometry (d is a prime number)

Computational and conjugate basis

$$\hat{\left(\begin{array}{c} \text{``position''} \end{array} \right)} \left| \ell \right\rangle \\ \hat{\mathcal{F}} = \frac{1}{\sqrt{d}} \sum_{\ell,\ell'=0}^{d-1} \omega(\ell \, \ell') \, |\ell\rangle \langle \ell' | \\ \end{array} \right)$$
 ``momentum'' ``momentum'''

Generators of translations in position and momentum

$$\hat{U}^{n}|\ell\rangle = |\ell+n\rangle$$

 $\hat{V}^{m}|\ell\rangle = \omega(m\ell)|\ell\rangle$

All the operations mod d

$$\omega(\ell) \equiv \omega^{\ell} = \exp(i2\pi\ell/d)$$

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for a single qudit (III)

Remarks

"Complementarity"

$$\hat{V} = \hat{\mathcal{F}} \, \hat{U} \, \hat{\mathcal{F}}^{\dagger}$$

Weyl commutation relation

$$\hat{V}^m \hat{U}^n = \omega(mn) \, \hat{U}^n \hat{V}^m$$

✓ Discrete "position" and "momentum" operators?

$$\hat{U} = \exp(-2\pi i \hat{P}/d)$$
 $\hat{V} = \exp(2\pi i \hat{Q}/d)$

There are no infinitesimal displacements!

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for a single qudit (IV)

Displacement operators

$$\hat{D}(m,n) = e^{i\phi(m,n)} \,\hat{U}^n \hat{V}^m$$

Relevant choice $\phi(m,n) = \frac{2\pi}{d} 2^{-1} mn$

Coherent states

 $\ket{m,n} = \hat{D}(m,n) \ket{\psi_0}$

Properties analogous to their continuous counterparts.

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for a single qudit (V)

Fixing the fiducial state

 Ground state of the "discrete harmonic oscillator" with periodic boundary conditions (Harper Hamiltonian)

$$\hat{H} = 2 - \frac{\hat{U} + \hat{U}^{\dagger}}{2} - \frac{\hat{V} + \hat{V}^{\dagger}}{2}$$

- Minimum uncertainty state
- Eigenstate of the discrete Fourier transform

$$\left|\psi_{0}\right\rangle = \frac{1}{\sqrt{C}} \sum_{\ell} \vartheta_{3}\left(\frac{\pi\ell}{d} \left|e^{-\frac{\pi}{d}}\right)\right|\ell\right\rangle$$

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for a single qudit (VI)

Wigner function

Map the density matrix into a classical function on the discrete grid

$$W_{\hat{\varrho}}(m,n) = \operatorname{Tr}[\hat{\varrho}\,\hat{\Delta}(m,n)]$$
$$\hat{\varrho} = \frac{1}{d}\sum_{m,n} W(m,n)\hat{\Delta}(m,n)$$

✓ Discrete Wigner kernel

$$\hat{\Delta}(m,n) = \frac{1}{d} \sum_{k,l} \omega(nk - ml) \,\hat{D}(m,n)$$
Double
Fourier transform

$$\hat{\Delta}(m,n) = \hat{D}(m,n) \, \hat{\Delta}(0,0) \, \hat{D}^{\dagger}(m,n) = 2 \hat{D}(m,n) \, \hat{P} \, \hat{D}^{\dagger}(m,n) \, \underset{\text{Parity}}{\text{Displaced}} \, \hat{P}_{\text{Parity}} \, \hat{D}^{\dagger}(m,n) = 2 \hat{D}(m,n) \, \hat{P} \, \hat{D}^{\dagger}(m,n) \, \hat{P} \, \hat{D}^{\bullet$$

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for a single qudit (VII)

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

✓ Instead of natural numbers, it is then convenient to use elements of the finite field $Gal(d^n)$ to label states.

 We can almost directly translate all the properties for a single qudit and we can endow the phase-space with the geometrical properties of the ordinary plane.

 \checkmark Let $|\lambda\rangle~$ be a computational basis (labeled by powers of a primitive element in the field)

$$\hat{U}_{\nu}|\lambda\rangle = |\lambda + \nu\rangle$$

$$\hat{V}_{\mu}|\lambda\rangle = \chi(\mu\lambda)|\lambda\rangle$$

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for multiqudit systems (II)

Displacement operators

 $\hat{D}(\mu,
u)=\phi(\mu,
u)\,\hat{U}_
u\hat{V}_\mu$

 $\phi(\mu,\nu) = \chi(2^{-1}\mu\nu)$

Coherent states

 $|\mu,
u
angle=\hat{D}(\mu,
u)|\Psi_0
angle$

Wigner function

$$egin{aligned} & W_{\hat{arrho}}(\mu,
u) = ext{Tr}[\hat{arrho}\,\Delta(\mu,
u)] \ & \Delta(\mu,
u) = rac{1}{d^n}\sum_{\lambda,\kappa}\chi(\mu\lambda-
u\kappa)\,\hat{D}(\lambda,\kappa) \end{aligned}$$

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for multiqudit systems (III)

 $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Phase space for multiqudit systems (IV)

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012

Conclusions

• For many purposes is useful to have a way of picturing quantum states. We have provided a comprehensive toolbox for this task.

• All the relevant quantum mechanical aspects can be encompased within this framework, provided one uses the proper phase space.

• The role of the Fourier transform in quantum information can be never underestimated.

International Workshop on Quantum Coherence and Decoherence, Cali, 24-28 September 2012