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II.a) Trapped ion physics

Charged atoms (ions) can be trapped in a combina-
tion of axial electrostatic and transversal oscillating
quadrupolar potentials. The most used is the linear
Paul trap where the radial confinement can be very
strong compared to the axial one, allowing a unidimen-
sional treatment of the motion of the trapped ions.

Innsbruck Ion Trap

In addition, lasers acting on the ions can couple their
internal degrees of freedom with their motion, which
can be cooled down to very low temperatures, where a
quantized treatment of the motion is required. In
this case we could write the following Hamiltonian

H = Ho +Hint

where
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and

Hint = h̄Ω(σ+ + σ−)[ei(qz−ωt+φ) + e−i(qz−ωt+φ)].

Here, the position and momentum operators are, re-
spectively,

z =

√
h̄

2mν
(a† + a),

p = i

√
mh̄ν

2
(a† − a).

In the interaction picture, and after the optical RWA
approximation,

HI
int = h̄Ω{σ+ exp[iη(a†eiνt + ae−iνt)− i(δt− φ)] + H.c.}.

Here, δ = ω − ωo and

η = q

√
h̄

2mν
= q∆z = 2π

∆z

λ
= 2π

√
〈0|z2|0〉

λ

is the Lamb-Dicke parameter, proportional to the ra-
tio between the width of the ground-state wave func-
tion and the excitation wavelength λ.



II.b) Red and blue sideband in trapped ions

By choosing δ = −kν (k positive integer), replacing it
in HI

int, and neglecting fast oscillating terms, also called
vibrational RWA, we have

HI
R = h̄Ω[σ+Fk(a

†a)akeiφ + σ−a†kF †
k(a

†a)e−iφ] .

with

Fk(a
†a) = e−η2/2

∞∑
	=0

(iη)2	+ka†	a	

	!(	+ k)!
.

Note that Fk is a polynomial in the number operator
and does not change the motional populations. The
Hamiltonian HR represents a nonlinear JC interaction
for the k-th red motional sideband.

The temporal evolution of the initial state |e〉|n〉 is

|Ψ(t)〉 = cos(Ωk
nt)|e〉|n〉 − ie−iφ sin(Ωk

nt)|g〉|n+ k〉

where

Ωk
n = (iη)ke−η2/2Ω

√
n!

(n+ k)!
Lk

n(η
2)

are the Rabi frequencies associated with the transitions
n ↔ n+k, and Lk

n are generalized Laguerre polynomial.



By choosing δ = kν (k positive integer), replacing it in
HI

int, and neglecting fast oscillating terms, we have

HI
B = h̄Ω[σ+a†kFk(a

†a)eiφ + σ−F †
k(a

†a)ake−iφ].

The Hamiltonian HB represents a nonlinear anti-JC
interaction for the k-th blue motional sideband.

A third case of interest happens when k = 0. This
yields, in the Lamb-Dicke regime, a nonlinear carrier
excitation

HI
C = h̄Ω(σ+Fo(a

†a)eiφ + σ−Fo(a
†a)e−iφ),

which produces nonlinear rotations depending on the
number of phonon excitations.

Lamb-Dicke regime: JC and anti-JC in ions

In particular, the so-called Lamb-Dicke regime emerges
when η

√
n̄ � 1 (Lk

n → 1).

If in addition we choose k = 1, we can write

HI
JC = ih̄ηΩ(σ+aeiφ − σ−a†e−iφ),

out of HR, which represents the implementation of the
JC model in trapped ions.



If we choose k = −1, then we can write

HI
AJC = ih̄ηΩ(σ+a†eiφ − σ−ae−iφ),

out of HB, which represents the implementation of the
anti-JC (AJC) model in trapped ions.

A third case of interest happens when k = 0. This
yields, in the Lamb-Dicke regime, a carrier excitation

HI
C = h̄Ω(σ+eiφ + σ−e−iφ),

which produces rotations around x-axis (φ = 0) and
y-axis (φ = π/2) in a trapped ion.

Exercise II.1: Deduce ab initio the effective Hamiltonians HI
JC,

HI
AJC, and HI

C, indicating the approximations involved.

Simultaneous JC + anti-JC in trapped ions

It is possible to consider a bichromatic excitation
of blue and red sidebands of a trapped ion, yielding
effective Hamiltonians of different kinds. For example,
we could build the following cases

HI
σxx = h̄ηΩ(σ+ + σ−)(a† + a) ∝ σx.x

HI
σxpx

= h̄ηΩ(σ+ + σ−)(a† − a)/i ∝ σx.px

HI
σyx = h̄ηΩ(σ+ − σ−)(a+ a†)/i = σy.x

· · ·
· · ·



This kind of interactions generates Schrödinger cats in
a resonant (fast) manner. We will also see later that
suitable combinations of these Hamiltonians could im-
plement quantum simulations of the Dirac equation
in 3+1, 2+1, and 1+1 dimensions.

For more detail, see Phys. Rev. Lett. 87, 060402 (2001); Phys.
Rev. Lett. 94, 153602 (2005); Phys. Rev. Lett. 98, 253005
(2007); http://arxiv.org/abs/0909.0674.

Exercise II.2: The Dirac equation in 1+1 dimensions, in a variant
of the supersymmetric representation, can be written as

i h̄
d

dt
|Ψ〉 = HD|Ψ〉

with

HD = cσxpx +mc2σz.

a) By using bichromatic excitations, show that it is possible to
implement the quantum simulation of the Dirac equation with
1+1 dimensions in a single trapped ion.

b) Show how to tune the speed of light and the mass of the Dirac
particle in your proposed simulation.



II.c) Measurement of a qubit: electron shelving

Electron shelving is the most precise qubit-readout
technique in any quantum mechanical system. It has
reached 99, 99% of fidelity in the discrimination be-
tween the ground and the excited state of a qubit en-
coded in a trapped ion.

cyclic
 transition

Photodetector

lens

In each shelving cycle, a photon is emitted and the
overall efficiency of detecting it is η � 1. After N
cycles, the probability of sequential failure is (1−η)N =
(1− ηN/N)N ∼ exp(−ηN), and the final fidelity can be
estimated as

F = 1− e−ηN.

For more information, see Rev. Mod. Phys. 75, 281 (2003);
Phys. Rev. Lett. 100, 200502 (2008).



II.d) Measurement of the Wigner function

Method of the Fresnel transform

Exercise II.3:

a) Consider the initially decoupled atom-field state (be phonon or
photon field)

|Ψ(0)〉 = |e〉 ⊗
∑
n

cn|n〉,

where the field state
∑

n
cn|n〉 is unknown to us, and show that,

after an interaction time τ of a red sideband (JC) excitation, it is
possible to estimate the population of the ground state as

Pg(τ) =
1

2
− 1

2

∞∑
n=0

Pn cos (2g
√

n+1τ),

where Pn = |cn|2 is the unkown population of the initial field.

b) Let us displace previously the initial field state with the dis-
placement operator D(α) = eαa

†−α∗a,

|Ψα(0)〉 = |e〉 ⊗D(α)
∑
n

cn|n〉 = |e〉 ⊗
∑
n

cn(α)|n〉,

and show that, after an interaction time τ of a JC evolution,

Pg(τ ;α) =
1

2
− 1

2

∞∑
n=0

Pn(α) cos (2g
√

n+1τ),

where Pn(α) = |cn(α)|2 is the population of the displaced field.

c) Assuming we are able to measure in the lab Pg(τ ;α) for different
complex displacements “α” and interaction times “τ”, suggest a
method for recovering the information about Pn(α) = |cn(α)|2.



d) Are we able to retrieve the full complex amplitudes cn′s
from the previous knowledge? Note that this would amount to a
full state reconstruction of the initially unknown field state.

e) From pseudoprobability distributions in phase space, the
Wigner function W(α), with d2α = d(Reα)d(Imα) ∝ dx dp, is the
most reputed. The reason is that the Wigner function contains
the same information as the field density matrix and, furthermore,
its 3D plots display better the interference and nonclassical
features of certain field states.

Following Glauber, the Wigner function can be defined as the
Fourier transform of the characteristic function χ(ξ) = Tr[ρD(ξ)],

W (α) =
1

π

∫
eαξ

∗−α∗ξ χ(ξ) d2ξ ,

We can retrieve the density operator of the system by inverting
these operations,

ρ =
1

π

∫
W (α)T (α) d2α,

where the operator T (α) = 1
π

∫
D(ξ)eαξ

∗−α∗ξ d2ξ.

A much simpler expression to calculate the Wigner function is

W (α) ≡ 2

∞∑
n=0

(−1)nPn(−α),

where Pn(−α) = |cn(−α)|2 is the population of photon/phonon
field displaced in the complex amplitude (−α).



Calculate and make a 3D plot of the Wigner function associated
with field states |0〉, |1〉, (|0〉+ |1〉)/√2, |α〉, and N±(|α〉 ± | − α〉).
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Wigner function of a Fock state with six excitations: |6〉.



f) Show that the Fresnel integral of cosine satisfies

2

π
√
i

∫ ∞

0

dτ exp (iτ2/π) cos(2
√
nτ) = (−1)n,

and that, finally, it is possible to reconstruct the Wigner func-
tion from measured Pg(τ ;−α) via the Fresnel integral

W (α) ≡ 2

∞∑
n=0

(−1)nPn(−α) =
8

π
√
i

∫ ∞

0

dτeiτ
2/π

[
Pg(τ ;−α)− 1

2

]
.

In conclusion, we can obtain the Wigner function directly from the
atomic dynamics Pg(τ ;−α) without the necessity to know each Pn.

For a review, see the masterpiece K. E. Cahill and R. J. Glauber,
Phys. Rev. 177, 1882 (1969); and for the Fresnel transform
method see Phys. Rev. Lett. 91, 010401 (2003).



Wigner function reconstruction via the Fresnel transform method.
The upper figure displays Rabi oscillations of displaced initial Fock
state |1〉. The lower figure represents the reconstruction of the
Wigner funtion through Fresnel kernel integration of Pg(τ ;−α)
until truncated time τm.



II.e) Instantaneous measurements of the motion

Many times we do not want or need the whole density
matrix of the system, but just a specific expecta-
tion value of a signficant observable, say a field
quadrature or the mean number of photons. In
those cases, more efficient methods can be derived.

We will show how to measure relevant field observ-
ables with the derivatives of the qubit population
at vanishing interaction time, τ = 0.

We consider an initially decoupled qubit-field system
described by state ρ(0) = ρat ⊗ ρf . We can choose the
initial qubit state ρat but we do not know ρf . After an
interaction time t, the probability of finding the ion
in the excited state |e〉 is given by

Pe(t) = Tr[ρ(t)|e〉〈e|] = 〈|e〉〈e|〉,
where ρ(t) is the density operator of the coupled system
after an interaction time t.

We know that for any operator A,

d

dt
〈A〉 = 1

ih̄
〈[A,H]〉+ 〈dA

dt
〉.

Then, for the time-independent operator A = |e〉〈e|,
d

dt
Pe(t) =

1

ih̄
〈[|e〉〈e|,H]〉.



We consider now that the qubit-field coupling follows
the JC dynamics, HJC = Ho + Hint. In this case,
[|e〉〈e|,Ho] = 0, and

d

dt
Pe(t) =

1

ih̄
〈[|e〉〈e|,Hint]〉.

With the use of Hint = h̄g(σ+a+σ−a†), we can calculate
[|e〉〈e|,Hint] = h̄g(σ+a− σ−a†), obtaining

d

dτ
Pe(τ) =

1

i
Tr[ρ(τ)(σ+a− σ−a†)],

where we have used the dimensionless time τ = gt.

We consider now that the qubit is prepared initially in
the state

ρ(0) = |+φ〉〈+φ| ⊗ ρf,

where |+φ〉 = 1√
2
(|g〉 + eiφ|e〉) and ρf is the field state

we aim at characterizing. Then, at interaction time
τ = 0,

d

dτ
P

+φ

e (τ)

∣∣∣∣
τ=0

=
1

i
Tr[|+φ〉〈+φ| ⊗ ρf(σ

+a− σ−a†)],

yielding

d

dτ
P

+φ

e (τ)

∣∣∣∣
τ=0

= 〈Xφ+π

2
〉,

where the generalized field quadrature Xφ is defined as

Xφ =
ae−iφ + a†eiφ

2
.



In particular, Xφ=0/Xφ=π/2 is proportional to the po-
sition/momentum of a trapped ion or the elec-
tric/magnetic field in cavity QED, respectively.

Exercise II.4:

a) Reproduce the previous results and, making use of these in-
stantaneous measurements, explain how to measure the posi-
tion/momentum operators of a single trapped ion, or the elec-
tric/magnetic fields of a cavity single mode.

b) Demonstrate that it is possible to measure the mean num-
ber of field excitations (photons/phonons) through the following
expression

〈n〉 = 1

2

d2P e
g (τ)

d2τ

∣∣
τ=0

− 1 ,

where P e
g (τ) is the measured population of the ground state |g〉

at interaction time τ , assuming that the initial state is |e〉.


