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I.a) Brief review of quantum mechanics

- The wavevector |Ψ(t)〉 describes the quantum state
of a physical system at a given time t.

- The Schrödinger equation

ih̄
d

dt
|Ψ(t)〉= H|Ψ(t)〉

is the dynamical equation that determines the temporal
evolution of the wavevector |Ψ(t)〉 due to the Hamil-
tonian operator H, which describes the total energy of
the system.

- If H �= H(t), then the formal solution of the Schrödinger
equation is

|Ψ(t)〉= U(to, t)|Ψ(0)〉= e−iH(t−to)/h̄|Ψ(to)〉,

where U(to, t) = e−iH(t−to)/h̄ is the evolution operator
associated with the time-independent Hamiltonian H.

- If H = H(t), then the formal solution for the evolution
operator is given trhough the Dyson series

U(to, t) = 1− i

h̄

∫ t

to

H(to, t
′)dt′

+
(− i

h̄

)2 ∫ t

to

dt′H(to, t
′)
∫ t′

to

H(to, t
′′)dt′′+ · · · ,

such that |Ψ(t)〉 = U(to, t)|Ψ(0)〉. Recall that U(to, t)
is a unitary operator such that U †U = UU † = 1.



- The density operator ρ(t) = |Ψ(t)〉〈Ψ(t)| is an al-
ternative description of the quantum state of a system
and its dynamics is given by the von Neumann equation

ρ̇ =
1

ih̄
[H, ρ].

- All physical predictions are the same if we use the
Schrödinger equation or the von Neumann equation
for |Ψ〉 or ρ = |Ψ〉〈Ψ|, respectively.

- However, the Schrödinger equation allows only the
description of pure states: the ones whose full infor-
mation can be encoded in a ket |Ψ〉.
- When the available information about the system is
reduced, we have to deal with mixed states, which
can be described by density operators

ρ =
∑

pj|Ψj〉〈Ψj|,

where pj is the probability of finding |Ψj〉,
∑

j pj = 1.

- The von Neumann equation is more general than the
Schrödinger equation, allowing the description of noisy
environments via master equations

ρ̇ =
1

ih̄
[H, ρ] + Lρ .

Here, the first term at the r.h.s. describes the uni-
tary or Hamiltonian evolution, and the second term
describes the nonunitary or dissipative dynamics.



I.b) Two-level atom driven by a classical field

g

e

We consider a dipolar coupling between a two-level
atom, with internal states |g〉 and |e〉, and a monochro-

matic coherent laser field �E = �Eo cos(ωLt+ φ),

H = Ho +Hdip =
h̄ωo

2
σz − �d. �E

=
h̄ωo

2
σz + h̄Ω(σ+ + σ−)[e−i(ωLt+φ) + ei(ωLt+φ)],

where σz ≡ |e〉〈e| − |g〉〈g|, �d = e�r is the dipole opera-
tor, σ+ ≡ |e〉〈g|,σ− ≡ |g〉〈e|, and the dipolar coupling

strength Ω ∝ | �Eo|〈g|r|e〉. After the optical rotating-
wave-approximation (RWA), the Hamiltonian reads

H =
h̄ωo

2
σz + h̄Ω[σ+e−i(ωLt+φ) + σ−ei(ωLt+φ)]

with ωo ≡ ωe − ωg, and ∆ ≡ ωo − ωL.



In the interaction picture, with Uo = eiHot/h̄,

HI = UoHdipU
†
o = h̄(Ωe−iφσ+ei∆t +Ωeiφσ−e−i∆t)

In particular, under resonant conditions, ∆ = 0, and
choosing φ = 0,

HI
x = h̄Ωσx,

where the Pauli operator σx ≡ σ+ + σ−. It is known
that |±〉 ≡ (|g〉 ± |e〉)/√2 are the eigenstates of σx with
eigenvalues ±1, such that σx|±〉= ±|±〉. This rotated
basis is sometimes called the (classical) dressed basis.

Always in resonance but with φ = π/2,

HI
y = h̄Ωσy,

with σy ≡ (σ+ − σ−)/i.

In this way, by controlling the laser frequency ωL and
phase φ, we can realize arbitrary rotations around x-axis
and y-axis, also called (classical) Rabi oscillations.

Exercise I.1: Calculate the temporal evolution of a general initial

state α|g〉+β|e〉 under a dynamics described by H, in the resonant

(∆ = 0), nonresonant (∆ �= 0), and dispersive (|∆| � Ω) case.

Exercise I.2: Implement efficiently a series of {σx, σy, σz} pulses

to implement a Hadamard gate and an arbitrary phase gate. See

Nielsen & Chuang, ”Quantum information and quantum compu-

tation”, and have a look at http://arxiv.org/abs/0908.3673.



I.c) Two-level atom driven by a quantized field

The Hamiltonian describing the coupling of a two-level
atom and a single mode of the quantized electromag-
netic field is

H = Ho +Hint =
h̄ωo

2
σz + h̄ωa†a+ h̄g(σ+ + σ−)(a+ a†)

where dipolar, two-level, and single-mode approxima-
tions have been done. Moreover, the RWA can be ap-
plied if g/ω 	 1, giving rise to the analytically solvable
Jaynes-Cummings (JC) model,

HJC =
h̄ωo

2
σz + h̄ωa†a+ h̄g(σ+a+ σ−a†).



The JC eigenstates read

|+, n〉 = sin θn|e〉|n〉+ cos θn|g〉|n+ 1〉
|−, n〉= cos θn|e〉|n〉 − sin θn|g〉|n+ 1〉

where

sin θn =
2g
√
n+1√

(∆n −∆)2 + 4g2(n+1)

cos θn =
∆n −∆√

(∆n −∆)2 + 4g2(n+1)

∆n =
√

∆2 + 4g2(n+ 1),

and the eigenvalues are

E±n = h̄ωo(n+
1

2
)± h̄∆n

2
.

In the resonant case, ∆ = 0, the eigenstates are

|+, n〉 = 1√
2
(|e〉|n〉+ |g〉|n+1〉)

|−, n〉= 1√
2
(|e〉|n〉 − |g〉|n+ 1〉),

and are the dressed states of the JC model. The re-
spective eigenvalues are E±n = h̄ωo(n+ 1

2
)± h̄g

√
n+1.



Exercise I.3: Show that under a suitable choice of phases, in
resonance, and after an interaction time τ ,

|e〉|n〉 → cos(gτ
√

n+1)|e〉|n〉+ sin(gτ
√

n+1)|g〉|n+1〉
|g〉|n+1〉 → cos(gτ

√
n+1)|g〉|n+1〉 − sin(gτ

√
n+1)|e〉|n〉

which are known as Rabi oscillations with Rabi frequency g
√
n+1.

|e>

|g>

|n+1>

|n>

For all JC doublets
{|g>|n+1>,|e>|n>}
labelled with “n”

Exercise I.4: Show that for an atom initially in state |e〉, and
the field in an arbitrary pure state

∑
n
cn|n〉, the probability of

finding the atom in the same state |e〉 (survival probability) after
an interaction time τ is

Pe(τ) =
1

2
+

1

2

∑
n

|cn|2 cos(2gτ
√

n+1)

Is it possible to use this expression in order to extract the field
populations |cn|2, in a set of experiments for different interactions
times τ?



I.d) Microwave CQED versus optical CQED

In the microwave regime, long-lived atomic levels and
cavities are used. Typically, circular Rydberg levels live
around 30 ms (Paris group) and a photon inside a high-
quality microwave cavity, Q ∼ 1010, lives ∼ 0.1s (Garch-
ing and Paris groups). The coupling strength can reach
g = 50 KHz and several coherent Rabi oscillations can
happen.

In the optical regime, fast decaying optical transi-
tions and high Q optical cavities are used. Typically,
Q ∼ 106, g ≤ 1 MHz and three-level atoms are con-
sidered (reduced effectively to two levels) for inhibiting
spontaneous emission. A great advantage is the pos-
sibility of having a controllable input and output axial
field. When combined with trapped-ion technology,
optical cavities represent a promising avenue for the
implementation of quantum stations performing long-
distance quantum communication.



I.e) Strongly-driven Jaynes-Cummings model

We consider a two-level atom coupled to a single-mode
cavity and a classical driving acting transversally on the
atom. The associated Hamiltonian reads

H =
h̄ωo

2
σz + h̄ωa†a+ h̄g(σ†a+ σa†)

+ h̄Ω(σ†e−iωLt + σeiωLt),

where Ω is the coupling between the external driving
and the atoms and ωL is the driving frequency.

We rewrite H in a frame rotating at the frequency of
the driving field, applying the unitary transformation
Uo = ei(

ωL
2
σz+ωLa†a)t,

HL =
h̄∆

2
σz + h̄δa†a+ h̄Ω(σ†+ σ)

+ h̄g(σ†a+ σa†),

with ∆ = ωo − ωL and δ = ω − ωL.



We go to the interaction picture with ∆ = 0, using

HL
o = h̄δa†a+ h̄Ω(σ†+ σ)

HL
int = h̄g(σ†a+ σa†),

obtaining

HI =
h̄g

2
(|+〉〈+| − |−〉〈−|

+ e2iΩt|+〉〈−| − e−2iΩt|−〉〈+|)ae−iδt +H. c.,

where |±〉= 1√
2
(|g〉 ± |e〉) are the eigenstates of σx.

In the strong-driving regime, Ω� g, and with δ = 0,

Heff =
h̄g

2

(|+〉〈+| − |−〉〈−|)(a+ a†)

=
h̄g

2
(σ†+ σ)(a+ a†) =

h̄g

2
σx(a+ a†)

and we obtain simultaneous JC and anti-JC !!

If the initial atom-field state is |g〉|0〉= 1√
2
[|+〉+ |−〉] |0〉,

then the evolution yields the state

1√
2
[|+〉|α〉+ |−〉| − α〉]

with α = −igt/2. A measurement in the bare basis
{|g〉, |e〉} produces

N± [|α〉 ± | − α〉] ,

called even/odd coherent states.



At this point, it is good to review the theory of the displacement
operator. I assume you know that

D(α) = eαa
†−α∗a,

such that a coherent state, the most classical of the quantum
states, can be created from the vacuum D(α)|0〉 = |α〉, with

|α〉 ≡ e−|α|
2/2

∑
n

αn

√
n!
|n〉.

I assume also that you can deduce (hidden exercise!) that Hamil-

tonian H = h̄(g∗a+ ga†) yields evolution operator U(t) = D(−igt).

Also in the strong driving limit Ω� g but with δ = ±2Ω

H(+)
JC =

h̄g

2

(|+〉〈−| a+ |−〉〈+| a†)

H(−)
AJC =

h̄g

2

(|−〉〈+| a+ |+〉〈−| a†),
JC or anti-JC in the dressed basis |±〉 !!

For more details, have a look at PRL 90, 027903 (2003); Phys.

Rev. A 71, 013811 (2005); PRA 77, 033839 (2008).



I.f) Second-order effective Hamiltonians

We assume that in a certain interaction picture it is
possible to write a time-dependent Hamiltonian as

HI(t) = h̄
∑
j

[A†je
iδjt + Aje

−iδjt]

where A†j is a time-independent function of system op-

erators. For example, A†j = gj a
†
jb

2
j ...+ ..., where gj are

coupling strengths.

If |δj| � gj, ∀j, and |δj ± δk| � gk, ∀{j �= k}, then, it can
be shown that the Dyson series for the evolution opera-
tor associated with time-dependent Hamiltonian HI(t)
can be recast in exponential form, U = exp(−iHefft/h̄),
where

Heff = h̄
∑
j

[A†j, Aj]

δj
.

There are several methods for deriving this kind of ef-
fective Hamiltonians. The present one, called the com-
mutator theorem, can be derived using the Dyson
series, and is very simple and powerful.

I will give two useful and simple examples.



Dispersive regime of the JC model

The Hamiltonian corresponding to the detuned JC model
and in the interaction picture can be written as

HI(t) = h̄g
(|e〉〈g|aeiδt + |g〉〈e|a†e−iδt),

where δ is the frequency difference between the two-
level system and the harmonic oscillator. Then, fol-
lowing the commutator theorem, with |δ| � g and
A† = gσ†a, the second-order effective Hamiltonian is

Heff = h̄
g2

δ
[|e〉〈e|(a†a+1)− |g〉〈g|a†a].

This shows that the dispersive regime produces, effec-
tively, AC-Stark shift terms conditioned to the number
of excitations in the oscillator.

Raman system

We will show how to realize the adiabatic elimination
of the upper level of a three-level atom in Lambda
configuration

|g>

|e>

|h>
δ



The associated Hamiltonian in the interaction picture
reads

HI(t) = h̄ΩL

(|g〉〈h|eiδt + |h〉〈g|e−iδt)
+ h̄g

(|e〉〈h|a†eiδt + |h〉〈e|aeiδt).
Then, following the commutator theorem with δ �
{ΩL, g} and A† = ΩL|g〉〈h|+ g|e〉〈h|a†, the second-order
effective Hamiltonian reads

Heff = h̄
Ω2

L

δ
|g〉〈g|+ g2

δ
|e〉〈e|a†a+

ΩLg

δ
(|g〉〈e|a+ |e〉〈g|a†),

where Ωeff = ΩLg/δ is the effective Raman coupling
associated with an anti-JC coupling, and the first and
second terms of the r.h.s. are AC-Stark shifts.

In principle, the anti-JC effective coupling is not on
resonance, but this fact can be corrected or exploited
depending on what are our purposes. If we want to cor-
rect them, then, we should note that this cannot be
done for all number states |n〉, due to the a†a depen-
dence. It can only be done for a given anti-JC doublet,
say {|g〉|0〉, |e〉|1〉}.



Exercise I.5:

a) Derive in detail Hamiltonian

H =
h̄g

2
σx(a+ a†).

b) Find the conditions under which it is possible to implement a
dispersive regime with

H =
h̄g

2
σx(ae

iδt + a†e−iδt),

another one with

H =
h̄g

2
(σ+e−iδ̄t + σ−eiδ̄t)(a+ a†),

and derive the associated effective Hamiltonians.

c) Comment your findings and results.



I.g) Selective interactions

The Jaynes-Cummings Hamiltonian in the interaction
picture, where the atom-field system is resonant, reads

HI
JC = h̄g(σ†a+ σa†)

and yields oscillations in all subspaces of the kind

{|g, n〉, |e, n− 1〉}, ∀n = 0,1, ...

- We call here selective interaction to a resonant
interaction inside a chosen subspace of the atom-field
Hilbert space,

{|g,No〉, |e,No ± 1〉},with fixedNo,

while all others remain dispersive.

|e>

|g>

|No + 1>

|No>
ONLY!



A selective interaction in microwave CQED

|g>

|e>

|h>
δ

We excite a three-level atom, in lambda configuration,
with a classical field of frequency ωL and a quantized
mode of frequency ωo, δ = ωh − ωg − ωL = ωh − ωe − ωo.

It can be shown that, in the interaction picture, the
Hamiltonian in the RWA can be written as

Hint = h̄ΩLσhge
−iδt + h̄gσheae

−iδt +H.c.,

where σjm ≡ |j〉〈m| is an atomic flip operator and a the
annihilation operator of the cavity mode.

If |δ| � {|ΩL|, |g|}, the upper level |h〉 can be adiabati-
cally eliminated yielding an effective 2nd order anti-JC
Hamiltonian

Heff = h̄
Ω2

L

δ
σgg + h̄

g2

δ
a†a σee

+ h̄
gΩL

δ
(σ+a†+ σ−a) ,

with σ+ = σeg.



Associated with the transition in subspace

|g,No〉←→|e,No +1〉,

there is an effective detuning

∆No

eg =
g2

δ
(No +1)− Ω2

L

δ

that can be cancelled by dc Stark shift for a given No.

Selectivity appears when we are able to tune to reso-
nance a specific subspace transition

|g,No〉 resonant←→ |e,No +1〉,

while all other doublet transitions remain dispersive.

When frequency adjustment is made for one specific
subspace {|g,No〉 , |e,No +1〉}, remaining detunings as-
sociated with other subspaces (n �= No) change to

∆n
eg
∗ ≡∆n

eg −∆No

eg =
|g|2
δ

(n−No).

If after this reshifting process, ∀n �= No,

∆n
eg
∗ � gΩL

δ
,

then we arrive to the selectivity condition

r ≡ g

ΩL
� 1.



Large Fock state generation

We tune our system to be selectively resonant with the
atom-field subspace

{|g,No〉, |e,No + 1〉}.
Then, we let it evolve for a time equivalent to a π

2
-pulse,

so that selectively the initial population

|g,No〉−→|e,No +1〉,

|g>

n

Pn

No

|g>

x

+x c |e>Noc |e> x

Pn

nN +1o

n

Pn

No

- When we measure the atom in |e >, the field is pro-
jected in Fock state |No+1〉 with probability Pe = |cNo

|2.



Selective cooling to the ground state

If now we tune to resonance the subspace

{|g,0〉, |e,1〉},
and the initial atom-field state is

|e〉 ⊗
∑
n

cn|n >,

|e><e| x

+x p |g><g|1p |g><g| x

Pn

n0

n

Pn

1

n

Pn

1

|e><e|

When we measure the atom in |g〉, with probability |c1|2,
the field is projected onto the ground state |0 >!!

A similar result is obtained from an initial thermal state
or other statistical mixture.



Photon statistics and Wigner function

When subspace {|g,No〉, |e,No +1〉} was tuned to reso-
nance, under the selectivity condition r � 1, we showed
that after a π

2
-pulse

Pe = |cNo
|2 ≡ PNo

,

which means that the measurement of Pe is equivalent
to the measurement of the probability of finding No

photons in the initial field, PNo
.

In this way, we can measure the complete photon statis-
tics Pn of an initial unknown field ρ, pure or mixed.

Combined with the possibility of displacing the un-
known field, this method allows the fully reconstruction
of its Wigner function through

W(−α) = 2
∑
n

(−1)nPn(α),

where Pn(α) = 〈n|D(α)ρD−1(α) |n〉 is the number dis-
tribution of state ρ displaced coherently in the phase
space by α.

For more details, have a look at PRL 87, 093601 (2001).



Exercise I.6:

a) Read carefully the last section (I.g) about ”Selective interac-
tions in microwave CQED”.

b) Rederive on your onw the selective effective Hamiltonian and
the selective condition.

c) Can you figure out other potential applications of selective
interactions?

d) Could we implement selective interactions in circuit QED?


