Quantum ontological models and the PBR theorem

A. F. Ducuara
C. E. Susa
J. H. Reina

Quantum Technologies, Information and Complexity - QuanTIC Universidad del Valle
International Workshop on Quantum Coherence and Decoherence (IWQCD1).

September 252012

Outline
■ Quantum ontological models (QOMs)

- ψ-onticity.
- Factorisability.
- Not Post-Peierls compatibility ($\neg P P$ compatibility).
- PBR theorem.
- An example.
- The same example under noisy channel.

Schematic representation

$$
P M \longrightarrow P, M
$$

Ontological Models (OMs)

Ontic States Space
 Measure $\quad \lambda \in \Lambda$ Space $p \in P$ $\xi \in M$

- Conditional Probabilities. $\quad \mu(\lambda \mid p), \xi(k \mid \lambda), p(k \mid p)$
-Total Probability Law. $\int_{\Lambda} \mu_{p}(\lambda) \xi_{\lambda}(k) d \lambda=p_{p}(k)$

Classical Ontological Model (COM)

Classical Mechanics
Classical Statistical Mechanics

- Conditional Probabilities.

Quantum Ontological Models (QOMs)

+3 assignments

Quantum Ontological Models (QOMs) 1

Quantum physical system represented by a Hilbert space H.

Quantum mechanics on OMs:

■ P : set of density matrices $p \rightarrow p_{\psi}$
■ $M=\left\{E_{k}\right\}$ Positive-Operator Valued Measure (POVM). $k \rightarrow E_{k}$

- $p\left(E_{k} \mid \rho_{\psi}\right):=\operatorname{tr}\left(E_{k} \rho\right), \quad$ Born rule on QOMs (P, M)

$$
\begin{array}{rlrl}
\Lambda & =? \\
\xi\left(E_{k} \mid \lambda\right)=?, & \mu\left(\lambda \mid \rho_{\psi}\right) & =?
\end{array}
$$

Quantum mechanics interpretations

$$
\begin{array}{r}
\text { Total probability law: } \forall E_{k} \in M, \rho_{\psi} \in P \\
\int_{\Lambda} \mu_{\rho_{\psi}}(\lambda) \xi_{\lambda}\left(E_{k}\right) d \lambda=p_{\rho_{\psi}}\left(E_{k}\right)=\operatorname{tr}\left(E_{k} \rho\right)
\end{array}
$$

[^0]On QOMs we have:

- EPR Completeness $1935{ }^{2}$.

■ BELL Locality 1964.

- Contextuality ${ }^{3}$.

The arguments about these properties can be reconstructed. QOMs were introduced five years ago. ψ onticity.

[^1]Quantum physical system H, that can be modeled by a QOM $\left(\Lambda, M, P,\left\{\mu\left(\lambda \mid \rho_{\psi}\right)\right\},\left\{\xi\left(E_{k} \mid \lambda\right)\right\},\left\{p\left(E_{k} \mid \rho_{\psi}\right)\right\}\right)$
ψ-ontic QOM (P, Λ)

$$
\mu\left(\lambda \mid \rho_{\psi}\right) \mu\left(\lambda \mid \rho_{\phi}\right)=0
$$

All probabilities have pairwise disjoint support.
Realism
ψ-complete QOMs $\subset \psi$-ontic QOMs

Factorisability (P, Λ)

In a multipartite system $\vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda^{n}, \rho_{\Psi} \in P$

$$
\mu_{\Psi}(\vec{\lambda})=\mu_{\psi_{1}}\left(\lambda_{1}\right) \ldots \mu_{\psi_{n}}\left(\lambda_{n}\right) \quad \mu_{\psi_{i}}\left(\lambda_{i}\right)=\mu\left(\lambda_{i} \mid \rho_{\psi_{i}}\right)
$$

- Factorisability can be argued through separability of $\rho_{\Psi} \in P$.

Not PP compatibility ${ }^{4}(\neg P P)(\mathrm{P}, \mathrm{M})$

$$
\forall E_{k} \in M, \exists \rho_{k} \in P \text { such that } p\left(E_{k} \mid \rho_{\psi}\right)=\operatorname{tr}\left(E_{k} \rho_{k}\right)=0
$$

■ Showing $\neg P P$ is not trivial.

- $\neg P P$ is an unnatural property.

[^2]Quantum physical system: $H=\bigotimes_{i=1}^{n} H_{i} \quad \operatorname{dim}\left(H_{i}\right)=k_{i}$. Modeled by a QOM (Λ, P, M). If the QOM satisfies:

- $\neg P P$ compatibility.

$$
\psi \text {-ontic QOM. }
$$

- $P=\left\{\rho_{\vec{x}}\right\}$
formed by separable states.
$\rightarrow \mu_{\vec{x}}$ satisfies factorisability.

A result from the last year.

[^3]

Overlap between probabilities

$$
w\left(\left\{\mu_{\vec{x}}\right\}\right)=0 \text { iff } \psi \text {-Ontic QOM }
$$

From the total probability law and $\neg P P$. For each $E_{\vec{x}}$ POVM element we have the appropriate $\rho_{\vec{x}}$ such that we have:

$$
\begin{gathered}
\int_{\Lambda^{n}} \mu_{\vec{x}}(\vec{\lambda}) \xi_{\vec{\lambda}}\left(E_{\vec{x}}\right) d \vec{\lambda}=\operatorname{tr}\left(E_{\vec{x}} \rho_{\vec{x}}\right)=0 \\
\sigma\left(\left\{\rho_{\vec{x}}\right\}\right):=\sum_{\vec{x}} \operatorname{tr}\left(E_{\vec{x}} \rho_{\vec{x}}\right)
\end{gathered}
$$

With factorisability, we can prove: $\quad w\left(\left\{\mu_{\vec{x}}\right\}\right) \leq \sigma\left(\left\{\rho_{\vec{x}}\right\}\right)$

$$
\begin{gathered}
0 \leq w\left(\left\{\mu_{\vec{x}}\right\}\right) \leq \sigma\left(\left\{\rho_{\vec{x}}\right\}\right)=0 \\
w\left(\left\{\mu_{\vec{x}}\right\}\right)=0
\end{gathered}
$$

Given a space $P=\left\{\rho_{\vec{x}}\right\}$ formed by separable states.
If $\sigma\left(\left\{\rho_{\vec{x}}\right\}\right)=0$ then the system satisfies $\neg P P$.
Then by PBR theorem the system can be represented by a ψ-ontic QOM.

Given a space $P=\left\{\rho_{\vec{x}}\right\}$ formed by separable states:
The problem is to minimize $\sigma\left(\left\{\rho_{\vec{x}}\right\}\right)$ on $\left\{E_{\vec{x}}\right\}$ POVM.

$$
\sigma\left(\left\{\rho_{\vec{x}}\right\}\right):=\sum_{\vec{x}} \operatorname{Tr}\left(E_{\vec{x}} \rho_{\vec{x}}\right)
$$

Matlab packages: SDPT3 ${ }^{8}$, YALMIP ${ }^{9}$.

[^4]\[

$$
\begin{aligned}
|\Psi(\vec{x})\rangle & =\bigotimes_{i=1}^{n}\left|\psi\left(x_{i}\right)\right\rangle, \quad x_{i}=0 \text { or } 1, \quad 0 \leq \theta \leq \pi / 2 \\
\left|\psi\left(x_{i}\right)\right\rangle & =\cos (\theta / 2)|0\rangle+(-1)^{x_{i}} \sin (\theta / 2)|1\rangle
\end{aligned}
$$
\]

Each subsystem is prepared in the same kind of state. (the same θ)

Good analytical bound! but show $\neg \mathrm{PP}$ is not trivial.

Example II, n=2 Qubits with general angles

$$
\begin{array}{lll}
\left|\psi\left(x_{1}\right)\right\rangle=\cos (\theta / 2)|0\rangle+(-1)^{x_{1}} \sin (\theta / 2)|1\rangle, & x_{1}=0 \text { or } 1, & 0 \leq \theta \leq \pi / 2 \\
\left|\psi\left(x_{2}\right)\right\rangle=\cos (\phi / 2)|0\rangle+(-1)^{x_{2}} \sin (\phi / 2)|1\rangle, & x_{2}=0 \text { or } 1, & 0 \leq \phi \leq \pi / 2
\end{array}
$$

Each subsystem is prepared in different kind of state. (angles θ, ϕ)

We can play with the systems configurations.

Example III: System under a noisy channel

The same example, but now the system can interacts with a quantum noise channel.

$$
\rho_{\vec{x}}^{\prime}(\theta)=\sum E_{k} \rho_{\vec{x}}(\theta) E_{k}^{\dagger}=p \rho+(1-p) E_{1} \rho_{\vec{x}}(\theta) E_{1}^{\dagger}
$$

p is the probability of that the environment does not interacts with the system.

a) 2 Qubits.

b) 3 Qubits.

Figure: $E_{0}=\sqrt{p} \mathbb{1}, E_{1}=\sqrt{1-p} Y, 0 \leq \theta \leq \pi / 2,0 \leq p \leq 1$ We found similar results to X, Z.
We can explain in analitical form the reduction of the zero region. The PBR theorem holds even for noisy scenarios (3 Qubits).

Few conclusions

■ OMs and QOMs are general theoretical frameworks to tackle realism on quantum mechanics; in particular, discussions like EPR "paradox", Bell theorem and contextuality can be reconstructed.

The PBR theorem

- $\neg P P$ compatibility.

$$
\longrightarrow \quad \psi \text {-ontic OM. }
$$

- P formed by separable states.

■ PBR theorem states a relation between separability and ψ-onticity, properties that represent certain realism level.
■ The PBR theorem gives us a tool to calculate a numerical approach to ψ-ontic realism through $\neg \mathrm{PP}$ (a non natural property) in separable states.

- In the particular example, if we consider an environment that interacts with the system, the PBR theorem holds for some scenarios.

■ Study better the \neg PP property.
■ Work with separable no pure systems.

- There exist other proof with other property instead factorisability. Systems with ψ-ontic realism with entanglement?

Thanks.

[^0]: ${ }^{1}$ N. Harrigan, R. W. Spekkens. Einstein, incompleteness, and the epistemic view of quantum states arXiv:0706.2661. 2007.

[^1]: ${ }^{2}$ N. Harrigan, R. W. Spekkens. Einstein, incompleteness, and the epistemic view of quantum states arXiv:0706.2661. 2007.
 ${ }^{3}$ N. Harrigan, T. Rudolph. Ontological models and the interpretation of contextuality arXiv:0709.4266v1. 2007.

[^2]: ${ }^{4}$ C. A. Fuchs C. M. Caves and R. Schack. Conditions for compatibility of quantum state assignments. PRA, 66, 2002.

[^3]: ${ }^{5}$ M. F. Pusey, J. Barrett, and T. Rudolph. The quantum state cannot be interpreted statistically arXiv:1111.3328. 2011.
 ${ }^{6}$ M. J. W. Hall. Generalisations of the recent Pusey-Barrett-Rudolph theorem for statistical models of quantum phenomena arXiv:1111.6304. 2011.
 ${ }^{7}$ M. F. Pusey, J. Barrett, and T. Rudolph. On the reality of the quantum state. Nature Phys., 8:476, 2012.

[^4]: ${ }^{8}$ Michael J. Todd Kim-Chuan Toh and Reha H. Tutuncu. SDPT3 version 4.0 a MATLAB software for semidefinite-quadratic-linear programming
 ${ }^{9} \mathrm{~J}$. Lofberg. YALMIP.

