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Introduction

Exists a necessary condition for the system fidelity to present a
nonmonotonical behavior,
this approach reveals that this characteristic depends only on the geometry of
the state,
this oscillatory behavior of the state fidelity brings crucial implications to the
MBQC fidelity

that is:
under the action of a common dephasing environment, this nonmonotonical time
dependence can provide us with appropriate time intervals for the preservation of
better computational fidelities.
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One-way quantum computation

New kind of quantum computation

Is realized using only local conditioned projective measurements applied to a
highly entangled state called the cluster state,

as it is entirely based on local measurements, instead of unitary evolution, the
computation is inherently irreversible in time,

the technical requirements for the one-way quantum computation can be
much simpler than those for the standard circuit model.
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One-way quantum computation

The Cluster state

|Φini〉 = |ψin〉1 ⊗ |+〉2 ⊗ |+〉3 ⊗ |+〉4 ⊗ |+〉5

|+〉n =
1√
2

(|0〉n + |1〉n)

|Φ〉 = S|Φini〉

Ĥ = ~g
∑
a,a′

f (a− a′)
1 + σ̂a

z

2
1− σ̂a′

z

2

for a linear chain whose interaction is between first neighbors:

f (a− a′) = δa+1,a′

Ĥint = −~g
4

∑
a,a′

f (a− a′) σ̂a
z σ̂

a′

z

Ŝ = exp
(
− i

~
Ĥintτ

)
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Ĥint = −~g
4

∑
a,a′

f (a− a′) σ̂a
z σ̂

a′

z
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Ĥintτ

)

L. G. E. Arruda (IFSC - USP) IWQCD1 - Cali - Colombia September 24, 2012 10 / 34



One-way quantum computation

The Cluster state

|Φini〉 = |ψin〉1 ⊗ |+〉2 ⊗ |+〉3 ⊗ |+〉4 ⊗ |+〉5

|+〉n =
1√
2

(|0〉n + |1〉n)

|Φ〉 = S|Φini〉
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One-way quantum computation

The Cluster state

S|Φini〉 =
1
2
|ψin〉1 |0〉2|−〉3|0〉4|−〉5

− 1
2
|ψin〉1 |0〉2|+〉3|1〉4|+〉5

− 1
2
|ψ∗in〉1 |1〉2|+〉3|0〉4|−〉5

+
1
2
|ψ∗in〉1 |1〉2|−〉3|1〉4|+〉5

where |ψ∗in〉1 = σ
(1)
z |ψin〉1 = α |0〉1 − β |1〉1 and |−〉n = 1√

2
(|0〉n − |1〉n)

The computation

Bj (φj) =

{
|0〉j + eiφj |1〉j√

2
,
|0〉j − eiφj |1〉j√

2

}
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One-way quantum computation

Example: How to implement a BIT-FLIP

B1 (0) =
|0〉1 + |1〉1√

2
= |+〉1

B2 (−π) =
|0〉2 + e−iπ|1〉2√

2
=
|0〉2 − |1〉2√

2
= |−〉2

B3 (0) =
|0〉3 + |1〉3√

2
= |+〉3

B4 (0) =
|0〉4 + |1〉4√

2
= |+〉4

Π̂1 (0) = |+〉1〈+|

Π̂2 (−π) = |−〉2〈−|

Π̂3 (0) = |+〉3〈+|

Π̂4 (0) = |+〉4〈+|
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One-way quantum computation

Example: How to implement a BIT-FLIP

So, we have four projectors: Π̂1 = |+〉1〈+|, Π̂2 = |−〉2〈−|, Π̂3 = |+〉3〈+|, and
Π̂4 = |+〉4〈+|
Our input and expected output are:

|ψin〉1 = |0〉1 ⇒ |ψout〉5 = |1〉5
We begin with the following disentangled state:

|Φini〉 = |0〉1 ⊗ |+〉2 ⊗ |+〉3 ⊗ |+〉4 ⊗ |+〉5
The Cluster State is given by:

S|Φini〉 =
1
2
|0〉1 |0〉2|−〉3|0〉4|−〉5

− 1
2
|0〉1 |0〉2|+〉3|1〉4|+〉5

− 1
2
|0〉1 |1〉2|+〉3|0〉4|−〉5

+
1
2
|0〉1 |1〉2|−〉3|1〉4|+〉5
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Exact dissipative dynamics

They consider a N -qubit system interacting with a common and a
independent dephasing environment.

The symmetry of the Hamiltonian allows the completely determination of the
propagator.

The dynamical evolution of a N -qubit state is calculated exactly.

The solution of the particular case of common dephasing environment allows
an analysis of different time and temperature scales.
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Exact dissipative dynamics

The Hamiltonian:

H =
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1 εk = ~ωk is the energy associated with the k-th mode of the field

2 ωk is the field frequency of the k-th mode

3 a†k and ak, are the customary creation and annihilation operators which
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Exact dissipative dynamics

The evolution of the N -qubit state is:

ρQ (t) = TrE

[
UI (t) ρQ (0)⊗ ρE (0)U†

I (t)
]

ρE (0) =
1
Z

exp (−βHE)

Z = Tr [exp (−βHE)]

β = 1/kBT

kB ≡ The Boltzmann constant and T ≡ The environment temperature.

The time evolution operator

UI (t) = T̂ exp
(
− i

~

∫ t

0

H̃I (t′) dt′
)
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Exact dissipative dynamics

ρQ
{in,jn} (t) = 〈i1, i2, . . . , iN |ρQ (t) |j1, j2, . . . , jN 〉

in, jn = ±1

jn are the eigenvalues of the σ
(n)
z Pauli operator associated with |0〉n and |1〉n,

in are the eigenvalues of the σ
(n)
z Pauli operator associated with n〈0| and n〈1|.

The evolution of the element ρQ
{in,jn}:

ρQ
{in,jn} (t) = exp

−Γ (t, T )

[
N∑

n=1

(in − jn)

]2


× exp

iΘ(t)

( N∑
n=1

in

)2

−

(
N∑

n=1

jn

)2
 ρQ

{in,jn} (0) (1)
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Exact dissipative dynamics

In the continuum limit

Γ (t, T ) =
∫
dωJ (ω) c (ω, t) coth

(
~ω

2kBT

)
, (2)

Θ(t) =
∫
dωJ (ω) s (ω, t) , (3)

with c (ω, t) = 1−cos(ωt)
ω2 and s (ω, t) = ωt−sin(ωt)

ω2

In our model we assume an ohmic spectral density,

J (ω) = ηωe−ω/ωc , (4)

η is a dimensionless proportionality constant that characterizes the coupling
strength between the system and the environment.
The result of the integration is also well-known and reads:

Θ(t) = ηωct− η arctan (ωct) (5)

Γ (t, T ) = η ln(1 + ω2
c t

2) + η ln
(
β~
πt

sinh
πt

β~

)
(6)
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Exact dissipative dynamics

The decoherence effects arising from thermal noise can be separated from
those due to the vacuum fluctuations,

this separation allows for an exam of different time scales present in the
dynamics,

the shortest time scale is determined by the cutoff frequency, τc ∼ ω−1
c ,

the other natural time scale, τT ∼ ω−1
T , is determined by the thermal

frequency ωT = πkBT
~

Quantum regime:
τc < t < τT

In the low temperature
limit, when ωc � ωT ,
the relaxation factor
behaves as
Γ (t, T ) ≈ 2η ln (ωct)

Thermal regime:
t > τT

for a sufficiently
high-temperature
environment, i.e.,
~ωc & kBT :
Γ (t, T ) ≈ ηωT t
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Oscillatory fidelity dynamics

The fidelity for a pure as a function of time in the interaction picture:

F (t) = Tr
{
ρQ (0) ρQ (t)

}
In this section we are interested to know when the fidelity dynamics of an
N -qubit system, interacting collectively with a dephasing environment, will
oscillate in time.

Following the paper of Prof. Quiroga and Prof. Reina, we notice, for the
quantum regime, a necessary condition for the non-monotonical behavior to
be present.

The oscillatory term in the evolution of the element ρQ
{in,jn}:

exp

iΘ(t)

( N∑
n=1

in

)2

−

(
N∑

n=1

jn

)2
 ρQ

{in,jn} (0)

⇒ The oscillatory behavior of the fidelity dynamics of qubits interacting with a
common dephasing environment is strongly dependent upon the initial condition
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Oscillatory fidelity dynamics

The oscillatory term in the evolution of the element ρQ
{in,jn}:

exp

iΘ(t)

( N∑
n=1

in

)2

−

(
N∑

n=1

jn

)2


When
(∑N

n=1 in

)2

=
(∑N

n=1 jn

)2

, i.e., when
∣∣∣∑N

n=1 in

∣∣∣ = ∣∣∣∑N
n=1 jn

∣∣∣
⇒ The fidelity dynamics WILL NOT OSCILLATE!!!

But
∑N

n=1 jn are the eigenvalues of the total σT
z Pauli operator associated with

the eigenstates |j1, j2, . . . , jn〉:

σT
z |j1, j2, . . . , jn〉 =

(
N∑

n=1

jn

)
|j1, j2, . . . , jn〉
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Oscillatory fidelity dynamics

Thus, if the initial state of the N -qubit system is a coherent superposition of

eigenstates of the σ
(T )
z operator, whose eigenvalues are equal in modulus, the

condition
∣∣∣∑N

n=1 in

∣∣∣ = ∣∣∣∑N
n=1 jn

∣∣∣ is automatically satisfied and the fidelity

dynamics does not oscillate at all.

On the other hand, a state of N qubits that is not written in this way, i.e., a

state that is written as a coherent superposition of the σ
(T )
z eigenstates

whose eigenvalues are not all equal in modulus (e.g., if exist at least one
eigenvalue different from the others in modulus), has a fidelity which indeed
oscillates in time.

The necessary condition for the non-monotonical behavior of the
fidelity dynamics ∣∣∣∣∣

N∑
n=1

in

∣∣∣∣∣ 6=
∣∣∣∣∣

N∑
n=1

jn

∣∣∣∣∣
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Fidelity dynamics of an MBQC

Here we will see how the previous result brings crucial consequences to the
MBQC scheme.
Adopting the most general input state:

|ψin〉1 = α |0〉1 + β |1〉1

|α|2 + |β|2 = 1

We assume, for simplicity, that the first measurement is applied at t0 = 0,
then:

|ψ〉2,...,5(0) =
α+ β

2
√

2
|0〉2|−〉3|0〉4|−〉5

− α+ β

2
√

2
|0〉2|+〉3|1〉4|+〉5

− α− β

2
√

2
|1〉2|+〉3|0〉4|−〉5

+
α− β

2
√

2
|1〉2|−〉3|1〉4|+〉5.

(7)

that is:
under the action of a common dephasing environment, this nonmonotonical time
dependence can provide us with appropriate time intervals for the preservation of
better computational fidelities.
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Fidelity dynamics of an MBQC

The state fidelity:

For the input state |φin〉1 = |0〉1
(α = 1)
In the quantum regime

with η = 1/1000, ωc = 100, and
ωT = 1

With this in mind, what can we say about the fidelity of quantum computation in
this peculiar regime?
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Fidelity dynamics of an MBQC

The gate fidelity:

At t0 = 0 we consider that the
five-qubit state is already entangled
and each qubit is ready to be
measured,

besides, the first qubit is also
projected at t0 = 0.

The gate fidelity:

TWO SCENARIOS:

In (a) we suppose that the three subsequent measurements are applied at
different instants of time and the qubits evolve non-unitarilly between the
measurements

In (b), after wait a time gap, the other three subsequent measurements are
made instantaneously at t = tfinal
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Fidelity dynamics of an MBQC: Measurements performed
at different times

The NOT-GATE fidelity:

Π2 = |−〉2〈−|, Π3 = |+〉3〈+| and
Π4 = |+〉4〈+|
|φin〉1 = |0〉1 ⇒ |φout〉5 = |1〉5
(t1; t2; tfinal)
(6/ωc, 8/ωc, 10/ωc) ⇒ F = 35, 4%
(14/ωc, 16/ωc, 18/ωc) ⇒ F = 53%
(15.2/ωc, 15.7/ωc, 16.2/ωc) ⇒ F =
84%
(15.5/ωc, 15.7/ωc, 15.9/ωc) ⇒ F =
90%

with η = 1/1000, ωc = 100, and ωT = 1

The NOT-GATE fidelity:

(7, 8/ωc; 23, 4/ωc; 39/ωc) ⇒ F =
50%
(15, 7/ωc; 31, 4/ωc; 47, 1/ωc) ⇒
F = 76%
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Fidelity dynamics of an MBQC: Measurements performed
at different times

The HADAMARD-GATE fidelity:

Π2 = |−, y〉2〈−, y|,
Π3 = |+, y〉3〈+, y|, and
Π4 = |+〉4〈+|, where
|±, y〉 = 1√

2
(|0〉 ± i|1〉)

|ψin〉1 = |0〉1 ⇒ |ψout〉5 =
1√
2

(|0〉5 + |1〉5)
(6/ωc, 8/ωc, 10/ωc) ⇒ F = 39%
(14/ωc, 16/ωc, 18/ωc) ⇒ F = 52%
(15.5/ωc, 15.7/ωc, 15.9/ωc) ⇒ F =
85%

with η = 1/1000, ωc = 100, and ωT = 1

The HADAMARD-GATE fidelity:

(7, 8/ωc; 23, 4/ωc; 39/ωc) ⇒ F =
50%
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Fidelity dynamics of an MBQC: Measurements performed
at different times

The PHASE-GATE fidelity:

Π2 = |+〉2〈+|, Π3 = |+, y〉2〈+, y|,
and Π4 = |+〉4〈+|
|ψin〉1 = 1√

2
(|0〉1 + |1〉1) ⇒

|ψout〉5 = 1√
2

(|0〉5 + i |1〉5)
(6/ωc, 8/ωc, 10/ωc) ⇒ F = 48%
(14/ωc, 16/ωc, 18/ωc) ⇒ F = 65%
(15.5/ωc, 15.7/ωc, 15.9/ωc) ⇒ F =
95% with η = 1/1000, ωc = 100, and ωT = 1

The PHASE-GATE fidelity:

(7, 8/ωc; 23, 4/ωc; 39/ωc) ⇒ F =
46%
(15, 7/ωc; 31, 4/ωc; 47, 1/ωc) ⇒
F = 85%
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Fidelity dynamics of an MBQC: Measurements performed
at the same time

The NOT-GATE fidelity:

tgap is greater than 0, 8/ωc (where
the gate fidelity is 93%),

tgap = 15, 7/ωc, when it reaches
93% again.

Times such as tgap = 31, 4/ωc or
tgap = 47, 1/ωc, we still get a gate
fidelity better than 80%,

while at times such as
tgap = 5, 8/ωc we obtain a gate
fidelity of 70%.

with η = 1/1000, ωc = 100, and ωT = 1
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Fidelity dynamics of an MBQC: Measurements performed
at the same time

The HADAMARD-GATE fidelity:

Fidelities greater than 80% at times
such as tgap = 15, 7/ωc,
tgap = 31, 4/ωc or tgap = 47, 1/ωc,

Fidelities less than 40% at times
such as tgap = 7, 8/ωc,
tgap = 23, 5/ωc or tgap = 39, 2/ωc.
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Fidelity dynamics of an MBQC: Measurements performed
at the same time

The PHASE-GATE fidelity:

At times like tgap = 15, 9/ωc,
tgap = 31, 6/ωc or tgap = 47, 3/ωc

we have a gate fidelity of 96%, 95%
and 93%, respectively,

while at times such as
tgap = 8, 4/ωc, tgap = 24, 8/ωc or
tgap = 40, 4/ωc we have a gate
fidelity of 22%, 34% and 44%.

with η = 1/1000, ωc = 100, and ωT = 1
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Conclusion

Exists a necessary condition for the system fidelity to present a
nonmonotonical behavior,

this approach reveals that this characteristic depends only on the geometry of
the state,

this oscillatory behavior of the state fidelity brings crucial implications to the
MBQC fidelity

that is:
under the action of a common dephasing environment, this nonmonotonical time
dependence can provide us with appropriate time intervals for the preservation of
better computational fidelities.
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